
1Overtone Corporation

NSL Reference Manual

NSL Reference Manual

Ver. 1.4 (2012/11/1)

Overtone Corporation

2 Overtone Corporation

NSL Reference Manual

Table of Contents
0. NSL outline . 5

Glossary . 5
Value . 6
Signal line . 6
Notation of numerical value 7
Estimation of bit width in operation 8
Characters usable for module name and signal
name . 9
Comment out . 9
End of syntax . 9
About clock signal and reset signal 9
Processing order of NSL processing system . 10
Operator . 10
Bit operation . 11
Arithmetic operation . 11
Shift operation . 11
Relational operation . 11
Logical operation . 11
Reduction operation†† .11

Other operations . 11
Priority of operation with integer 12
Priority of the operation of only integer and
integer variable . 13

1. Basic structure . 14
2. Declaration of I/O structure element 16

Declaration of data input terminal/data output
terminal . 16
Declaration of data I/O terminal 16
Declaration of control input terminal/control
output terminal . 17

3. Declaration of parameter 19
4. Declaration of internal structure element . 22

Declaration of internal terminal 22
Declaration of register 22
Declaration of control internal terminal 23
Declaration of submodule 24
Declaration of "procedure" 27
Declaration of state variable 28
Declaration of memory 29
Declaration of structure 30

5. Atomic action / block 32
Atomic action . 32
Transfer of value . 32
Increment and decrement of register 32
Example of basic operation description 34
Conditional operation 45
Block . 47
Description of parallel operation block 48
”alt” block . 48
”any” block . 50
”if” block . 51

6. Construct "generate” 53
Structure syntax generate 53
Structure syntax if . 54
 Integer variable Integer 55
Temporary terminal variable 56

7. Action description of control terminal 57
Control internal terminal 57
Control input terminal 58
Control output terminal 59
“seq” block . 60
Label , Goto . 61
“while” block . 63
“for” block . 65

8. Action description of SUBMODULE 68
9. Action description of PROCEDURE 70
10. Action description of state. 72
11. Action description of memory 74
12. Structure . 75
13. Interface . 77
Appendix 1. Synthesis directive 80

”include” directive . 80
”define” “undef” directive 80
”ifdef” / “ifndef” / “else” / “endif” directive 81

Appendix 2. System task 83
display and monitor . 84
time . 84
finish . 85
readmemh, readmemb 86

Appendix 3. Reserved keyword 88

3Overtone Corporation

NSL Reference Manual

Table and Sample contents
Description example 1. Declaration example of I/O structure element .18
Description example 2. Usage example of parameter syntax .20
Description example 3. Declaration of internal terminal/Usage of register declaration 23
Description example 4. Declaration usage example of control internal terminal24
Description example 5. Declaration example of submodule .26
Description example 6. Parameter usage example in submodule declaration27
Description example 7. Declaration example of "procedure" .28
Description example 8. Declaration of state variable .29
Description example 9. Declaration example of memory .30
Description example 10. Declaration example of structure .31
Description example 11. Description example of basic atomic action .34
Description example 12. Description example of bit operation .35
Description example 13. Description example of arithmetic operation .36
Description example 14. Description example of shift operation .36
Description example 15. Description example of bit coupling .37
Description example 16. Bit connecting at left-hand side .38
Description example 17. Description example of reduction operation .39
Description example 18. Description example of logical operation .40
Description example 19. Description example of repeat operation .41
Description example 20. Description example of bit clipping out. .42
Description example 21. Description example of bit sequence reverse .43
Description example 22. Description example of designation of bit width .44
Description example 23. Description example of sign extension .45
Description example 24. Description example of conditional operation .47
Description example 25. Description example of "alt" block .50
Description example 26. Description example of "any" block .51
Description example 27. Description example of "if "block .52
Description example 28. Structure syntax generate .54
Description example 29. Description example of structure syntax if .55
Description example 30. Description example of partial substitution into temporary terminal56
Description example 31. Description example of control internal terminal .58
Description example 32. Description example of control input terminal .59
Description example 33. Description example of control output terminal .60
Description example.34 Description example of “seq” block .62
Description example.35 Description example of “seq” block:label .63
Description example 36. Description example of “while” block .64
Description example 37. Detailed operation of “while” block .65
Description example 38. Description example of “for” block .66
Description example 39. Detailed operation of “for” block .67
Description example 40. Description example of submodule syntax .69
Description example 41. Description example of "procedure" .71
Description example 42. Description example of state .73
Description example 43. Description example of memory .74
Description example 44. Description example of structure .76
Description example 45. Description example of interface .78
Description example O-1. Description example of "include” .80
Description example O2-1. Example of system task of "display", "monitor", and "time"85
Description example O2-2. Example of system task "finish" .86
Description example O2-3. Example of system task "readmemh" .87
Description example O-2. Description example of "define” .81
Description example O-3. Description example of "ifdef/ifndef/else/endif” .82
Table 0-1. Operator .11
Table 0-2. Priority of operator .12

4 Overtone Corporation

NSL Reference Manual
Table 1-1. Basic structure of NSL .14
Table 2-1. Table of I/O structure element .16
Table 5-2. The block that can be used anywhere .48
Table 5-3. The block that can be used in a special condition .48
Table O2-1. Corresponding table by language of system task .83
Table O2-2. Corresponding table by language of system task .83
Table O2-3. Format specifier of system task .84

5Overtone Corporation

NSL Reference Manual

Chapter 0
0. NSL outline

Glossary
HDL (Hardware Description Language)

Computer language for hardware design that is used when ASIC and FPGA, etc . are de-

signed

NSL (Next Synthesis Language)

Hardware Description Language based on the message driven .

Syntax

Syntax that is described in accordance with syntax of NSL language

Module

Bundle of minimum units that are described by NSL

Action

Part that operates with one clock

Action statement

Element in a module, which represents action

Common action description

Part that always operates with every clock among the action descriptions except "proce-

dure" and "function"

Atomic action

Minimum unit of action that is described in the action description part of a module

Proc (Procedure)

Processing that consolidates actions that are used repeatedly many times

Func (Function)

Bundle of processes that can be called from outside and inside of a module via a control

terminal by consolidating action descriptions in a unit

Instance

In a submodule syntax, "substance" when a module to be lower is declared in a higher

module

I/O structure element

Element that combines the signal to be input into module and the signal to be output

from module

Data terminal

Signal line that inputs and outputs numerical value

6 Overtone Corporation

NSL Reference Manual
Register

Memory element that is used in an electronic circuit and HDL, etc . It is used to assist the

operation, and store the value, etc .

Memory

It is made to save multiple data by arranging the registers .

Control terminal

Signal line to activate "function" that resides in a module

Internal structure element

Element that configures module itself such as "register" and "procedure", etc.

Block

Part that is put in {} in action description . It includes the kinds of "par”, "any”, "alt”, "if",

"seq”, etc ., and each block operates separately .

Hierarchic structure

Structure that overlaps in stratified like the floor in a building . Achieving a hierarchic

structure makes it easy to structure a large-scale system . Submodule syntax is used for

NSL to achieve a hierarchic structure .

Block top level

Independent block that is not nested by any block

MSB/LSB (Most Significant Bit/Least Significant Bit)

As for NSL language, it assumes that the leftmost is MSB (Most Significant Bit), and the

rightmost is LSB (Lest Significant Bit).

Compile, Compiling operation

It is indicated to generate a lower language source from NSL language source using

NSL conversion engine . Or, its operation is indicated .

Value
In NSL language, each element can take the following values .

Data terminal: "1", "0", "Z" (Hi-Z), "U" (Undriven), "X" (Indefinite)

Register and memory: "1", "0", "U" (Undriven)

Control terminal and task: "1", "0"

Signal line
Signal line is used to exchange the data between modules .

In NSL language, "1", "0", and "X" can be transmitted when one-bit "single-line signal" is

prepared .

In addition, "bus" that binds up multiple single lines is prepared to send more information .

7Overtone Corporation

NSL Reference Manual

Digit number in bit of bus defines the leftmost as Most Significant Bit (MSB), and the right-

most as Least Significant Bit (LSB), and it is counted from LSB as the first digit.

For example, when data of "101010" is output to a six-bit signal line, the first digit is 0, the

second for 1, the third for 0, the forth for 1, fifth for 0, and the sixth for 1.

It is also possible to clip out optional bits of a bus to transfer them to other terminal, and to

check only specific bits of the bus to determine the next operation.

However, it is not permitted to write in a specific bit of a bus such as preparing 4-bit reg-

ister, and writing “1” in only the second bit, for example . This is due to the reasons, "the

readability is remarkably decreased easily" and "it is easy to become a hotbed of defective

operation" .

Declaration method of bus is explained in Chapter 4, and action description of bus is done

in Chapter 5 .

Notation of numerical value
Notation of numerical value in NSL has two kinds of Verilog HDL type and C language

type .

Notation of Verilog HDL type describes as follows:

<Bit_width>'<Radix_Character><Value>

For example, 12 in decimal numbers is expressed by the binary numbers in 4-bit width as

follows:

4’b1100

Binary is abbreviated as "b" .

4-bit, 5 in decimal numbers is expressed as follows:

4’d5

In this way, it describes Binary number: b, Octal number: o, Decimal number: d, and

Hexadecimal number: h respectively in Verilog HDL type .

And, it describes in C language type notation as follows:

0<Radix_Character><Value>

For example, 8 in decimal number is expressed in binary number of 4-bit width as follows:

0b1000

In this notation of C language type, it describes Binary number: b, and Hexadecimal

number:x respectively .

Though "value" need not be matched to the bit width in Verilog HDL type, in C language

8 Overtone Corporation

NSL Reference Manual
type, the bit width is decided by the width in "value" described .

For example, it is decided to 8 bits for 0x00, and 4 bits for 0b0000 .

In addition, "_" (Underscore) can be used to represent Value. Underscore is disregarded

when compiling . It can be used to raise the readability of numerical representation in mul-

tiple digits .

Example:

8'b01011010 → 8'b0101_1010

32'hA9876543 → 32'hA987_6543

0x12345678 → 0x1234_5678

Estimation of bit width in operation
In NSL, only the signal value in a determined width is allowed for the operation of the sig-

nals in a transmission to a terminal and a register . It is allowed to use an integer (and an

integer variable) for the 2nd term of an operation in a part of the operations in which opera-

tion operand is constrained to the numbers in the same bits as an exception . It is because

NSL processing system presumed the number of bits, and changes it into a signal value in

a determined width . Since the same presumption is performed also in a transmission of a

value to signal and register, a setup of initial value of register and memory, and memory ad-

dressing, it realizes unambiguous description as reducing the amount of description .

An integer can also be used for a term of a formula when the number of bits can be pre-

sumed .

•		As for the right-hand side (actual argument of proc or func_xxx is included) of a

transmission to terminal or register, an integer or an integer variable is changed

into a constant in the bit width concerned to be transferred since the bit width at the

transmitting destination is determined .

• As for the operations of +, -, &, |, and ^, the bit width of 2nd term is presumed by the

bit width of 1st term . So, an integer or integer variable can be used for the 2nd term .

Here, in the case of 1st term and 2nd term being an integer or an integer variable, it

is treated as an integer operation, and results in an integer without bit width .

• Conditional operation of if (...) ... else ... can use an integer or an integer variable for

both true and false value when the bit width is determined in the description place (the

right-hand side of a transmission to a terminal or a register, and the 2nd term of an

operation of the same bit width each above-mentioned).

9Overtone Corporation

NSL Reference Manual
Characters usable for module name and signal name
In NSL, the following characters are usable for identifier such as module name and signal

name, etc .

•	English	one-byte	characters	(A-Z/a-z)

•	Figure	(0-9)

•	Underscore	"_"	(Second	character	or	later)

However, a double mark of the underscore "__" is prohibited to prevent misreading .

Comment out
Comment out in NSL is compatible with C language, and two kinds of representations are

permitted .

Single line comment describes as follows:

//	Comment

Area comment:

/*Comment*/

Notes: Though single line comment can be described in an area comment, the area

comment cannot be nested.

End of syntax
In NSL, an end of syntax is represented by semicolon ";" .

When a syntax that is a minimum unit of the description such as declaration of element,

and description of operation, etc . is ended, the end is determined using the semicolon as

follows .

Declaration	of	structure	element	;

Description	of		action	;

It is also possible to do multiple descriptions by separating with a semicolon, however it is

not recommended because the readability falls remarkably .

About clock signal and reset signal
Verilog HDL and VHDL are a signal-oriented language that varies the behavior with a

certain signal . NSL, on the other hand is a language based on the message driven that

decides the operation by describing the behavior of a module first.

NSL automatically provides a synchronization signal for module, and creates a module that

operates with a single-phase or a multi-phase clock .

It also provides a reset signal for the circuit as well as the synchronization signal at the

10 Overtone Corporation

NSL Reference Manual
same time .

When it is not specified at all, the clock signal is automatically synthesized with the name of

“m_clock”, and the reset signal with “p_reset” . Both of the clock name and the signal name

can be changed by a compilation option .

Processing order of NSL processing system
In NSL processing system, it is processed in the following 3 stages:

• Expansion of directive by preprocessor

• Structural expansion

• Synthesis of circuit description by structure elements

Expansion of directive by preprocessor is explained in Appendix 1 .

Structural expansion is a syntax which is expanded in order of the described regardless

of the element of a circuit description. Using a structural expansion makes it possible to

reduce the amount of description when producing multiple, similar circuits . For details,

it explains in Chapter 6. An integer (and an integer variable) determines a value by the

processing called structural expansion .

Operator
Though operator of NSL is basically compatible with Verilog HDL, a part of relational

operations, and division are excluded .

The unique NSL operation includes sign extended arithmetic . Operator usable for NSL is

listed in Table 0-1 .

(Hereafter, the semicolon used in the table is used as a sign to delimit the syntax used in

NSL from its meaning.)

11Overtone Corporation

NSL Reference Manual
Table 0-1. Operator

Bit operation
& : Bit operation AND
| : Bit operation OR
^ : Bit operation EX-OR
~ : Bit operation NOT

Arithmetic operation
+ : Arithmetic addition
- : Arithmetic subtraction
* : Arithmetic multiplication
++ : increment †

-- : decrement †

Shift operation
>> : Right shift
<< : Left shift

Relational operation
== : Equal
!= : Not equal
> : Greater than
< : Less than
>= : Greater than or Equal to
<= : Less than or Equal to

Logical operation
! : Logical NOT
&& : Logical AND
|| : Logical OR

Reduction operation††

& :Reduction AND
~& : Reduction NAND
| : Reduction OR
~| : Reduction NOR
^ : Reduction EX-OR
~^ : Reduction EX-NOR

Other operations
{sigA,sigB,...,sigX} : Bit connecting
num#sig : Sign extension
num’(sig) : Specifying bit width (Extension of bit
width without sign)
sig[num] : Bit clipping operation
sig[numA:numB] : Bit clipping operation
numA{numB} : Repeated operation
i f (condit ion) sigA else sigB : Condit ional
operation

 †The following clock reflects the result of an increment and a decrement.

 ††Reduction operation can be used only for the multi-bit signal . (It cannot be used for 1-bit

signal.)

Moreover, the priority in Table 0-2 exists in the NSL operator .

When multiple operators are described in an expression of a sentence, the operation is se-

quentially executed from the operator with higher priority .

"()" is used to raise the priority of expression in an expression.

12 Overtone Corporation

NSL Reference Manual
Table 0-2. Priority of operator
Priority Operator Explanation Example

1 (High)

{sigA,sigB,...,sigX} Bit connecting {0b0,0b1,0b01} → 0b0101
numA{numB} Repeated operation 4{0b0} → 0b0000

num#sig Sign extension 8#0b0101 → 0b00000101

num’(sig)
Specifying bit width
(Extension of bit width
without sign)

8’(0b1101) → 0b00001101

& Reduction AND &0b1111 → 1, &0b0111 → 0
| Reduction OR |0b0000 → 0 , |0b0111 → 1
^ Reduction EX-OR ^0b1111 → 0 , ^0b0111 → 1
~ Bit operation NOT ~0b0101 → 0b1010
! Logical NOT if (!a)

2 * Arithmetic multiplication q = a * b

3 + Arithmetic addition q = a + b
- Arithmetic subtraction q = a - b

4 << Left shift q = 4'b1010. (q << 1) = 4'b0100
>> Right shift q = 4'b1010. (q >> 1) = 4'b0101

5

<= Less than or Equal to if (a <= b)
>= Greater than or Equal to if (a >= b)
< Less than if (a < b)
> Greater than if (a > b)

6 == Equal if (a == b)
!= Not equal if (a != b)

7 & Bit operation AND a = 4'b0110 . b = 4'b1100 . a & b = 4'b0100
^ Bit operation EX-OR a = 4'b0110 . b = 4'b1100 . a ^ b = 4'b1010

8 | Bit operation OR a = 4'b0110 . b = 4'b1100 . a | b = 4'b1110
9 && Logical AND if (a && b)
10 || Logical OR if (a || b)
11 (Low) if () sigA else sigB Conditional operation q = if (a>b) a else b

Priority of operation with integer
Although an integer bit width is determined at the time of structural expansion as above-

mentioned, it is necessary to make the 1st term a signal and the 2nd term an integer for the

operation (*) performed by the same bit width each in order to determine the bit width. It is

judged also seeing the lead 2 terms in case of 3 terms or more, however when a formula

put in parenthesis () is placed, the priority is given considering it as indication.

(*) Operation by each operator of +, -, <, <=, >, >=, ==, !=, |, ^, and &

13Overtone Corporation

NSL Reference Manual
Priority of the operation of only integer and integer variable
As for the operation of only integer and integer variable, it is operated from the left regard-

less of the priority of the operator. Please use the parenthesis () in the portion related to an

operation order .

Example

Integer I;

Variable v[8];

I=2+3*4;

V=I;

In this case, not 14 but 20 goes into v .

14 Overtone Corporation

NSL Reference Manual

Chapter 1
1. Basic structure

In this chapter, explains the basic system of NSL is explained .

Basic structure in the description of NSL consists of the system in Table 1-1 .

(Hereafter, the syntax enclosed with <> in Reference may be omitted.)

Table 1-1. Basic structure of NSL

declare	Modulename	<	interface	>	{

	 <Parameter	declaration	list>

	 <Declaration	of	I/O	structure	element	list>

}

module	Modulename	{

	 <	Declaration	of	internal	structure	element	list	>

	 <	Action	description	list	>

	 	 -	<Common	action	discription	part>

	 	 -	<Function	discription	part>

	 	 -	<Procedure	discription	part>

}

NSL consists of the "declare" syntax and the "module" syntax .

"Declaration of I/O structure element" and "Parameter declaration" are executed in the "de-

clare" syntax .

"Declaration of I/O structure element" is explained in Chapter 2, and "Parameter declara-

tion" in Chapter 3 .

“Declaration of internal structure element" and "Action description" are executed in the

"module" syntax .

"Declaration of internal structure element" is explained in Chapter 4, and "Action descrip-

tion" in Chapter 5~10 .

It is assumed one module in NSL combining the "declare" syntax and the "module" syntax .

The “declare” syntax and the “module” syntax need not be necessarily written sequentially .

The compilation is accepted if a set of the both exists in the same file when compiling.

Therefore, it is also possible to collect only the "declare" and put them into a separate file,

and to "include" it as a header file.

The modifier called interface or simulation can be attached to declare. The interface modi-

fier is used to specify the signal name of a clock and a reset explicitly to a module calling

as a submodule .

15Overtone Corporation

NSL Reference Manual
When a declare of submodule was performed without an interface modifier, the signal

names of m_clock for a clock and p_reset for a reset are used . Please refer to Chapter 13 .

Interface for details. The simulation modifier is used when a system task is used for a simu-

lation within the module . Please refer to Appendix 2 . Task system task for details .

16 Overtone Corporation

NSL Reference Manual

Chapter 2
2. Declaration of I/O structure element

In this chapter, it explains about the declaration of I/O structure element .

I/O structure element indicates the data terminal and the control terminal that is input or

output to the module .

Declaration statement is needed to use the I/O structure element in NSL module .

The following Table 2-1 shows the I/O structure element in NSL .

Table 2-1. Table of I/O structure element
input Data input terminal
output Data output terminal
inout Data input and output terminal
func_in Control input terminal
func_out Control output terminal

In the I/O structure element, it is possible to describe multiple signal names, and delimit

them with a comma "," when multiple signals are declared in a declaration .

Declaration of data input terminal/data output terminal
Data terminal indicates a signal line that sends and receives a data of numerical values .

Data input terminal/data output terminal indicates a data terminal that is directed in the in-

put direction/output direction of each module .

As for both of the data input terminal and the data output terminal, it can set "bit width" by

enclosing it with [] in the back of a signal name .

At the bit width is omitted, it becomes a signal line in 1-bit width .

Data input terminal, data output terminal is declared as follows .

input	Input_signal_name[bit_width]	

output	Output_signal_name[bit_width]

Declaration of data I/O terminal
The data I/O terminal indicates a line that can correspond to both the input and the output .

Bit width of the data I/O terminal can also omit the bit width just as the declaration of data

input terminal/data output terminal .

The following shows the declaration method of the data I/O terminal .

inout	I/O_signal_name[bit_width]

17Overtone Corporation

NSL Reference Manual
Declaration of control input terminal/control output terminal
In NSL, the control terminal can be described besides the data terminal .

The control terminal indicates a line to activate "function" that resides in a module from the

inside and the outside of the module .

Moreover, "function" is the one in which a certain action description was consolidated .

Description method of the "function" is explained in Chapter 6 .

The control input terminal is a control terminal used to activate the "function" from an exter-

nal module, and the control output terminal is a control terminal used to activate an external

"function" . The bit width cannot be set to the control terminal .

The control input terminal/control output terminal can have a dummy argument be accom-

panied with one signal name . Data of an actual argument given in an action description is

transmitted to the element specified for a dummy argument. That is, it becomes an under-

taking spot to which the actual argument is temporarily transferred .

When multiple dummy arguments are accompanied, a comma "," is feasible to delimit the

dummy arguments .

Declaration of the control input terminal/control output terminal is described respectively as

follows .

func_in	Control_input_signal_name(<dummy_argument>,	<dummy_argu-

ment>,	<dummy_argument>, <dummy_argument>, ...)

func_out	Control_output_signal_name(<dummy_argument>,	<dummy_ar-

gument>,	<dummy_argument>, <dummy_argument>, ...)

At this time, the dummy argument accompanied with the control input signal is limited to the

data input terminal, and the dummy argument accompanied with the control output signal is

limited to the data output terminal .

It is recommended to write dummy argument to improve the readability, and it is also pos-

sible to omit it .

The function can have a terminal to return a return value . Since a return value terminal is a

data terminal, it can also have a bit width . In the case of control input/output terminal, the

return value terminal is a data input/output terminal, but note that the direction of the control

terminal and the return value terminal becomes reverse .

The description method of the function with a return value terminal is as follows .

func_in Name of control input signal (<Dummy argument>, <Dummy

argument>, <Dummy argument>, ...) : Return value output terminal

18 Overtone Corporation

NSL Reference Manual
(or, input/output terminal)

func_out Name of control output signal (<Dummy argument>, <Dummy

argument>, <Dummy argument>, ...) : Return value input terminal

(or, input/output terminal)

Declaration example of I/O structure element is shown in the description example 1 .

Description example 1. Declaration example of I/O structure element

declare	test_inout	{

	 input				a	;	 	 //Data	input	terminal	a	is	declared	by	1	bit.

	 output			b[4]	;	 //Data	output	terminal	b	is	declared	by	4	bits.

	 inout				c[12]	;	//Data	I/O	terminal	a	is	declared	by	12	bits.

	 func_in		d	;	 	 //Control	input	terminal	d	is	declared.

	 func_in		e(a)	;

	 	 	 	 //Control	input	terminal	e	with	dummy	argument	a	is	declared.

	 func_out	f(b)	;

	 	 	 	 //Control	input	terminal	f	with	dummy	argument	b	is	declared.

	 input	reti[8];

	 	 	 	 //Declaration	of	data	input	terminal	in	8	bits	

	 	 	 	 	 for	return	value	terminal

	 output	reto[8];

	 	 	 	 //Declaration	of	data	output	terminal	in	8	bits	

	 	 	 	 	 for	return	value	terminal

	 func_in	g	;	reto;

	 	 	 	 //Declaration	of	control	input	terminal	g	

	 	 	 	 	 by	setting	return	value	reto

	 func_out	h(b)	;	reti;

	 	 	 	 //Declaration	of	control	output	terminal	h	

	 	 	 	 	 by	setting	dummy	argument	b	and	return	value	reti

}

module	test_inout	{

	 //Describe	internal	structure	elements

	 //Describe	actions

}

It becomes possible to use each signal of a, b, c, d, e, and f in the action description to be

described by declaring the I/O structure element like this .

19Overtone Corporation

NSL Reference Manual

Chapter 3
3. Declaration of parameter

In this chapter, it explains about the declaration method of the parameter syntax .

In NSL, it is possible to design a circuit by configuring multiple modules in a hierarchical

structure . It can use not only what is described in NSL but also what is done in Verilog

HDL/VHDL/SystemC for a module to be lower . The parameter syntax is provided to con-

trol a generation of the "instance" of a module that is described in a parametric syntax with

Verilog HDL/VHDL/SystemC . (A module described in NSL doesn't support the parameter

syntax. In this case, a parameter is given by "define" option. Please refer to the appendix

for the "define" option.)

Declaration example of parameter

param_int	Parameter_name	//	Integer	type	parameter	(signed	32bit	

integer)	

param_str	Parameter_name	//	Character	string	type	parameter	(No	

limitation.	It	depends	on	the	memory	in	processing	environment.)

To create a lower module, please refer to the submodule syntax to be described in Chap-

ter4, and Chapter 7 .

Description example 2 shows a usage example of the parameter syntax .

20 Overtone Corporation

NSL Reference Manual
Description example 2. Usage example of parameter syntax

module	lower_mdl	(

	 a	,

	 b	,

	 q	,

	 Add

);

	 parameter	NofA	=	4	;

	 parameter	NofB	=	6	;

	 input	 [NofA-1:0]	 	 	 a	;

	 input	 [NofB-1:0]	 	 	 b	;

	 output	[(NofA+NofB-1):0]	 q;

	 input	 Add;

	 assign	#1	q	=	(Add	==	1'b1)	?	(a	+	b)	:	0	;

endmodule

It is assumed that there is already a following module written in Verilog HDL .

/*	Include	parameter	table	*/

#define		 Num_of_A	 8	 	 	 	 	 //	Num_of_A	is	defined	for	submodule.

#define		 Num_of_B	 12		 	 	 	 //	Num_of_B	is	defined	for	submodule.

#define		 Num_of_Q	 (Num_of_A+Num_of_B)

	 	 	 	 	 	 	 	 	 	 	 	 	 //	Num_of_Q	is	defined	for	submodule.

/*	'Parametalized	Adder'	*/

declare		parametalized_adder	interface	{	

	 	 	 	 	 	 	 	 	 	 	 	 	 //	Submodule	is	declared	by	interface.

	 param_int	NofA	;		 	 	 	 	 //	Parameter	NofA	id	declared.

	 param_int	NofB	;		 	 	 	 	 //	Parameter	NofB	id	declared.

	 input	 	 a[Num_of_A]	;

	 input	 	 b[Num_of_B]	;

	

	 output		 q[Num_of_Q]	;

	 func_in	Add(a,	b)	;

}

When this module is used as a lower module, the lower module declaration of the module

to be higher is as follows .

21Overtone Corporation

NSL Reference Manual

/*	Declare		"TOP	module"	*/

declare		 TOP_module	{	 	 	 	 //	TOP_module	is	declared

	 input	 	 add_a[Num_of_A]	;

	 input	 	 add_b[Num_of_B]	;

	

	 output		 result_q[Num_of_Q]	;

	 func_in	Add(add_a,	add_b)	;

}

	

/*	Equation	of	'TOP	module'	*/

module	TOP_module	{

	 //	Instantiate	submodule	and	send	parameter

	 parametalized_adder	u_adder(NofA	=	Num_of_A,	NofB	=	Num_of_B)	;

	

	 function	 Add	{

	 	 //	Submodule	u_adder	is	exceuted.

	 	 result_q	=	u_adder.Add(add_a,	add_b).q	;	

	 }

}

And, the lower module declared in the “declare” is called from the higher module as follows .

At this time, integral value or character string can be transferred to the lower module by

adding a parameter to the "instance" name that was made substantial .

22 Overtone Corporation

NSL Reference Manual

Chapter 4
4. Declaration of internal structure element

In this chapter, it explains about the declaration method of internal structure element .

The internal structure element indicates the structure elements in a module such as "wir-

ing", "register", "control internal terminal", "state variable", "procedure", and "memory", etc .,

and it becomes possible to use the internal structure elements in an action description to

be described by declaring .

It is possible to declare multiple internal structure elements at a time by describing the mul-

tiple internal structure elements and separating them with a comma "," .

Declaration of internal terminal
An internal terminal becomes a syntax that provides "wiring" to arrange the data on multiple

terminals .

Declaration of the internal terminal is “wire”, and it is defined as follows.

wire	Internal_terminal_name[bit_width]

A value transferred to wire is valid within the same clock cycle .

As for the "wire”, it can set a bit width, and omit it, too .

It is treated as "X" (indefinite) while nothing has been input to the "wire".

Declaration of register
Register is a memory element that memorizes the last input value on the leading edge of

clock signal . When the value is transferred to the register, the value is recorded at the next

clock .

Moreover, it is also possible to prepare a register in optional bit width, and to set an initial

value in NSL when declaring .

Register declaration is executed in the following method .

reg	Register_name[bit_width]	=	<initial_value>

Here, the declaration of internal terminal and the register declaration are shown in Descrip-

tion example 3 .

23Overtone Corporation

NSL Reference Manual
Description example 3. Declaration of internal terminal/Usage of register declaration

declare	test_reg	{

	 //	Describe	I/O	structure	element

}

module	test_reg	{

	 wire	wire_a	[16]	;	//	Internal	terminal	wire_a	is	declared	by	16	bits.

	 reg	reg_b[4]	;		 	 //	Register	reg_b	is	declared	by	4	bits.

	 reg	 reg_c,	reg_d,	reg_e	;	

	 	 //	Register	reg_c,	reg_d	and	reg_e	are	declared	at	once

	 reg	 reg_f[4]	=	4'b1010	;	

	 	 //	Register	reg_f	is	declared	by	4bits	and	initialize	1010

	 //	Describe	actions

}

It becomes possible to use “wire” and “reg” respectively in the action description to be de-

scribed by describing the declaration of internal terminal and the register declaration like

Description example 3 .

It is also possible to omit setting an initial value. In that case, "X" (indefinite) is entered

when resting .

Declaration of control internal terminal
Control internal terminal is a signal of control terminal in a module, and it can be called only

in a described module .

Also, the control internal terminal can be related to a function . (The action description of

function is explained in Chapter 6.) It can allow the control internal terminal to have multiple

dummy arguments .

Declaration method of the control internal terminal is as follows .

func_self	Control_internal_terminal

And, the declaration method when a dummy argument is given is described as follows .

func_self	Control_internal_terminal(<dummy_argument>,	<dummy_ar-

gument>,	<dummy_argument>,	...)

Only "wire" defined by the declaration of internal terminal can allow a dummy argument to

accompany a control internal terminal .

24 Overtone Corporation

NSL Reference Manual
It is recommended to write a dummy argument to improve the readability . (It is also possible

to omit it.)

It describes as follows when describing also return value terminal .

func_self Name of control internal terminal: Name of return value

terminal

func_self Control internal terminal (<Dummy argument>, <Dummy ar-

gument>, < Dummy argument>, …) : Name of return value terminal

Return value terminal can be used only for wire defined by a declaration of internal terminal.

The following Description example 4 shows a declaration example of the control internal

terminal .

Description example 4. Declaration usage example of control internal terminal

declare	test_func_self	{

	 //Describe	I/O	structure	element

}

module	test_func_self	{

	 wire	a	[4],	b[2]	;

	 func_self	funcC(a,b)	;

	 //	Describe	actions

}

The operation of a control internal terminal can be described like this by declaring a control

internal terminal .

Please refer to Chapter 6 for the action description of the control internal terminal .

Declaration of submodule
In NSL, submodule syntax is provided to describe a hierarchic structure . When the

submodule syntax is used, a submodule declaration is executed in a higher module .

When the submodule syntax is used, it is indispensable to prepare a lower module to be a

submodule . The module that is scheduled to be a submodule is also called "template" .

The submodule declaration is made substantial by specifying a module name to be a tem-

plate, and giving the name only in a higher module . This module of template that was made

substantial is called "instance" .

Production of instance makes the following possible .

• Inputting a value to data input terminal

25Overtone Corporation

NSL Reference Manual
• Calling control input signal

• Receiving a coming value of data output terminal

• Receiving a control output signal

The submodule syntax is declared in the following method .

Module_name	Instance_name

Moreover, multiple "instances" of a submodule can be prepared describing multiple "in-

stance" names by separating them with a comma .

Template name instance name 1, instance name 2, instance name 3,

…

Furthermore, multiple templates can be substantialized (multiplicity is given) also by the

method of attaching the number of instances to the instance name with [] .

Template name instance name [3]

Since the number of the suffix is set to the number of instances, only a natural number (1, 2,

3, …) can be set inside [].

26 Overtone Corporation

NSL Reference Manual
Description example 5. Declaration example of submodule

//	Submodule	"test_sub"	that	becomes	template.

declare	test_sub	{

	 input	a	;

	 output	f	;

}	

module	test_sub	{

	 //	Describe	actions

}

//"test_module"	becomes	top	module.

declare	test_module	{

	 input	test_in	;

	 output	tset_out	;

}

module	test_module	{

	 test_sub	SUB	;	//	Template	module	"Test_sub"	is	made	to	instance	by	the	

name	"SUB"	in	test_module	and	defined.	

test_sub	SUB1,SUB2,	SUB3;	//Substantializing	3	modules	of	SUB1,	SUB2,	and	

SUB3	at	a	time

					test_sub	SUB_Array[3];				//3	modules	of	SUB_Array[0],	SUB_Array[1],	

SUB_Array[2]	are	substantialized	at	a	time.

	 //	Describe	actions

}

A submodule can be used in a higher module by being described as Description example 5 .

Moreover, the parameter syntax is used when a parameter of a lower module is operated

from a higher module .

An example using the parameter syntax of a submodule is shown in the following

Description example 6 .

27Overtone Corporation

NSL Reference Manual
Description example 6. Parameter usage example in submodule declaration

declare	test_sub	{

	 param_int	INT	;

	 param_str	CHA	;

	 input	a	;

	 output	f	;

}	

module	test_sub	{

	 //	Describe	actions

}

declare	test_module	{

	 input	test_in	;

	 output	tset_out	;

}

module	test_module	{	

	 //	Template	module	"Test_sub"	is	defined	by	the	instance	"SUB1"

	 //	in	test_module.	

	 test_sub	SUB1	;

	 //"14"	is	passed	to	the	parameter	"INT"	of	the	instance	"SUB2".	

		 test_sub	SUB2(INT	=	14)	;

	 //String	"NEKO"	is	passed	to	the	parameter	"CHA"	of	the	instance	"SUB3"

	 test_sub	SUB3(CHA	=	"NEKO")	;

	 //	Describe	actions

}

Describing in this way, it is possible to pass a different parameter to each "instance"

"SUB1", "SUB2", and "SUB3".

That is, it can start an "instance" with the same structure even giving various data and

states to it when generating it . Please refer to Chapter 7 for the action description of the

submodule syntax .

Declaration of "procedure"
The "procedure" is a syntax to provide the control that uses state transition, pipeline, and

sequential circuit, and has an area where the operation only for the "procedure" is de-

scribed excluding the common action description .

When the "procedure" was once activated, it transits to another "procedure", or continues to

operate until end of the "procedure" is declared .

28 Overtone Corporation

NSL Reference Manual

To declare a “procedure”, the following description method is executed . It is possible to ac-

company dummy argument when declaring, and multiple dummy arguments can be also

given by separating them with a comma .

proc_name	Procedure_name(<dummy_argument>,	<dummy_argument>,	

<dummy_argument>,	...)

The dummy argument that can be accompanied with a "procedure" is only register which is

declared by ‘reg’ syntax .

Description example 7. Declaration example of "procedure"

declare	test_proc	{

	 //Describe	I/O	structure	element

}

module	test_proc	{

	 reg	r1,	r2,	r3	;		

	 //	Procedure	proc_A	is	declared.

	 proc_name	proc_A()	;

	 //	Procedure	proc_B	with	dummy	argument	r1	is	declared.

		 proc_name	proc_B(r1)	;

	 //	Procedure	proc_C	with	dummy	arguments	r2	and	r3	is	declared.

	 proc_name	proc_C(r2,	r3)	;

	 //		Describe	actions

}

Declaring in this way makes it possible to use the "procedure" in a module . Please refer to

Chapter 8 for the action description of the "procedure" .

Declaration of state variable
State variable is the syntax to define a state transition machine, and it is called "state". The

state variable can be given to an action description by declaring the state . The state is de-

clared in the action description part though it is explained details in Chapter 9 .

The declaration of a state can be executed not only the common action description part but

also in the "procedure", and when it was declared in a "procedure" it can be used only in

the "procedure" .

Moreover, the state described at the head of the declaration is activated when the module

is activated .

29Overtone Corporation

NSL Reference Manual
The state declaration method is executed as follows .

state_name	Statemachine_name

Description example 8 shows a declaration example of the state variable .

Description example 8. Declaration of state variable

declare	test_state	{

	 //Describe	I/O	structure	element

}

module	test_state	{

	 //	Common	action	description	part

	 {

		//Declare	states.	It	executes	from	State	described	at	first.	

	 //	State	state1,	state2	and	state3	are	declared.

	 state_name	state1,	state2,	state3	;

	 }

}

Declaring a state in this way makes it possible to use the state in the common operation

part .

Please refer to Chapter 9 for the action description of a state variable .

Declaration of memory
Memory is the syntax that organizes and memorizes a large amount of information, and de-

clares in the declaration list of internal structure elements .

The value is reflected to the relevant address at the clock next to the memory written clock.

The declaration method of the memory is as follows .

mem	Memory_name[address_number][memory_bit_width]

It is also possible to initialize the memory when declaring .

The memory initialization method is as follows .

mem	Memory_name[address_number][memory_bit_width]	=	{data_at_ad-

dress0,	data_at_address1,	...	data_at_addressX}

In addition, the memory at an address where no initialized data exists is initialized to 0

when the number of the initialized data is less than the number of the memory addresses .

Declaration example of the memory is shown in Description example 9 .

30 Overtone Corporation

NSL Reference Manual
Description example 9. Declaration example of memory

declare	test_mem	{

}

module	test_mem	{

	 //	Declare	a	memory	without	initalize	

	 mem	memory1[1024][32]	;

	 //	Declare	a	memory	with	initalize

	 mem	memory2[4][8]	=	{	8'hFF,	8'hAA,	8'h12,	8'h32	}	;

}

When being described as Description example 9, it declares memory1 (Not initialized) with

the number of addresses 1024 and bit width 32, and memory2 (Initialized with 0xff, 0xaa,

0x12, and 0x32) with the number of addresses 4 and bit width 8.

Please refer to Chapter 10 for the action description using the memory .

Declaration of structure
In NSL, structure can be used so that the signals in multiple bit widths are treated collec-

tively. Using structure makes it possible to treat the signals in various bit widths collectively.

The structure first declares. A declare is described outside module (in a portion not inside

declare, nor module). The signal type is not specified at this point. In addition, please note

that “;” is required at the end of struct declaration .

Name	of	structure{

	 Member	of	structure	1;

	 Member	of	structure	2;

	 Member	of	structure	3;

	 :

	 Member	of	structure	x;

};

The ones previously declared among the members of a structure are arranged at the top of

the structure .

Then, instance of the structure is declared in the module . When instance is declared, it

specifies whether the kind of signal is reg or wire. The details for the instance declaration of

structure are explained in Chapter 12 .

31Overtone Corporation

NSL Reference Manual

Declaration example of structure is listed in the following Description example 10 .

Description example 10. Declaration example of structure

struct	config_addr	{	//	config_addr	

	 p_enable;

	 p_reserve[7];

	 p_bus[8];

	 p_device[5];

	 p_func[3];

	 p_regaddr[6];

	 p_zero[2];

};	//	;	is	required

declare	{

	 input	p[32];

}

module	test_mem	{

	 config_addr	reg	caddr_1	;	

	 //	config_addr	Structure	config_addr	is	declared	as	instance	caddr_1

caddr_1	:=	p;

}

32 Overtone Corporation

NSL Reference Manual

Chapter 5
5. Atomic action / block

Since NSL is a hardware description language, operation is basically executed in parallel . A

minimum operation unit of the individual action executed in parallel is called “atomic action” .

Moreover, the action is described by changing the behavior with a unit of "block" in NSL .

The atomic action and the block are explained in this chapter .

Atomic action
An action is called atomic action in NSL .

Then, it explains details of the main atomic actions step by step .

Transfer of value
The atomic action is based on "transfer" in NSL .

"Transfer" indicates that a value is input from a terminal and a register, etc . to other terminal

and register, etc .

The following Tables 5-1 shows types of the transfers .

Table 5-1. Type of transfer
wire/output/inout transfer =
reg transfer :=

"=" is used to transfer it to "wire”, “output”, and “inout” .

Transfer_destination	=	Transfer_source

In addition, ":=" is used to transfer a value to a register (reg). Transferring direction is the

same as the above .

Register_of_transfer_destination	:=	Transfer_source

Increment and decrement of register
Increment indicates that 1 is added to a variable value, and it is rewritten to the value, and

decrement does that 1 is subtracted from a variable value, and it is rewritten to the value . In

NSL, there is the atomic action that can increment and decrement to the register .

Notes: ++ and -- are not an operator. A varied numerical value is reflected in the reg-

ister at the next clock.

Using "++" when add one to the register, and "--" when subtract one from it, it is described

as follows .

33Overtone Corporation

NSL Reference Manual
Description example 11 shows an example that uses the basic atomic action that has come

out so far .

++Register_name (pre-increment)

--Register_name (Pre-decrement)

Register_name++ (post increment)

Register_name-- (post decrement)

It can also use increment and decrement for the right-hand side of a formula . Even in this

case, the next clock reflects the value to which increment, decrement were given.

For example,

i = r++

The above process is that the value of r is first transferred to i, and r+1 is transferred to r at

the next clock .

i = ++r

The above process is that the value of r+1 is first transferred to i, and r+1 is transferred to r

at the next clock .

Examples using the basic unit action so far are shown in Description example 11 .

34 Overtone Corporation

NSL Reference Manual
Description example 11. Description example of basic atomic action

declare	test_par	{

	 input	in_a[4]	;

	 output	out_b[4]	;

	 output	out_c[4]	;

	 output	out_d[4]	;

	 output	out_e[4]	;

}

module	test_par	{

	 wire	wire_i[4]	;

	 reg	r1[4],	r2[4]	=	4'd0,	r3[4]	=	4'd0	;

//Common	action	description	is	begin.

	 r1	:=	in_a	;	 	 	 	 //	In_a	is	transferred	to	r1.	

	 out_b	=	4'b1010	;	 	 //	10(4'b1010)	is	transferred	to	out_b.	

	 out_c	=	r1	;	 	 	 	 //	R1	is	transferred	to	out_c.

	 wire_i	=	4'b1111	;		 //	15(4'b1111)	is	transferred	to	wire_i.

	 out_d	=	wire_i	;		 	 //	Wire_i	is	transferred	to	out_d.	

	 out_e	=	wire_i	;		 	 //	Wire_i	is	transferred	to	out_e.

	 r2++	;		 	 	 	 	 	 //	Increment	r2.

	 r3--	;		 	 	 	 	 	 //	Decrement	r3.	

}

In Description example 11, eight atomic actions are described in the common action de-

scription part, and all of them are executed at the same time .

Example of basic operation description
In the foregoing section, it explained about "transfer" that is important for the atomic action

of NSL .

The following presents an example of the operation that forms the basis of action descrip-

tion . First of all, an example of bit operation that is the basic of HDL is shown in Description

example 12 .

35Overtone Corporation

NSL Reference Manual
Description example 12. Description example of bit operation

declare	test_bit_exec	{

	 input	inA[8]	;

	 input	inB[8]	;

}

module	test_bit_exec	{

	 reg	r1[8],	r2[8],	r3[8],	r4[8]	;

	

	 //	Logical	OR	of	each	bit	of	inA	and	inB	is	transferred	to	r1.

	 r1	:=	inA	|	inB	;

	 //	Logical	AND	of	each	bit	of	inA	and	inB	is	transferred	to	r2.	

	 r2	:=	inA	&	inB	;

	 //	Logical	NOT	of	each	bit	of	inA	is	transferred	to	r3.

	 r3	:=	~inA	;

	 //	Logical	NOT	of	logical	OR	of	inA	and	logical	NOT	of	inB

	 //	is	transferred	to	r4.

	 r4	:=	~(inA	|	~inB)	;

}

Description example 12 shows an example of logical OR and logical AND of the bit opera-

tion, and logical NOT .

The bit operation is an operator to which the logical operation result of each bit is output .

For example, when signals A and B in four bits are 1010 and 1001 respectively, A&B be-

comes 1000, and A|B does 1011 .

In this way, as for the bit operation, it is operated 1 bit to 1 bit at each digit of each bit . For

the bit operation, the bit width of each operation object should be the same .

Next, an example of arithmetic operation is shown in Description example 13 .

36 Overtone Corporation

NSL Reference Manual
Description example 13. Description example of arithmetic operation

declare	test_math	{

	 input	inA[16]	;

	 input	inB[16]	;

}

module	test_math	{

	 reg	r1[16],	r2[16],	r3[32]	;

	

	 r1	:=	inA	+	inB	;	//	InA	and	inB	are	added	and	it	transfers	to	r1.	

	 r2	:=	inA	-	inB	;	//	InB	is	subtracted	from	inA	and	it	transfers	to	r2.

	 r3	:=	inA	*	inB	;	//	InA	and	inB	are	multiplied	and	it	transfers	to	r3.

}

Description example 13 shows an example of "addition", "subtraction", and "multiplication"

of the arithmetic operation .

The sum of inA and inB is transferred to r1, the difference between inA and inB is done to

r2, and the product of inA and inB is done to r3 .

As for the addition and the subtraction, the bit width of each operation object should be the

same .

In case of the multiplication, bit width of the output destination of an operation result should

secure an adequate width beforehand because the "sum of bit width of operation objects"

becomes the bit width of the operation result .

Next, an example of shift operation is shown .

The shift operation is an operation that shifts the objective signal line and register right and

left by optional number of bits .

Description example 14. Description example of shift operation

declare	test_shift	{

	 input	inA[16]	;

}

module	test_shift	{

	 reg	r1[16],	r2[16],	r3[16]	;

	

	 //InA	is	shifted	5	bits	to	the	right	and	it	transfers	to	r1.	

	 r1	:=	inA>>5	;

	 //	InA	is	shifted	6	bits	to	the	left	and	it	transfers	to	r2.

	 r2	:=	inA<<6	;

}

37Overtone Corporation

NSL Reference Manual
Description example 14 shows an example of "right shift" and "left shift" of the shift opera-

tion .

The one in which inA is shifted right by five bits is transferred to r1.

The one in which inA is shifted left by six bits is transferred to r2 .

In the shift operation, the bit width is the same as before the shift even if it is shifted right

and left .

The bit that ran off to the right side at a right shift is discarded, and the empty left side is

filled up with the value of "0".

Next, an example of the bit coupling is shown . The bit coupling is an operation that can

couple individual signals .

Description example 15 is shown as follows .

Description example 15. Description example of bit coupling

declare	test_sig	{

	 input	inA[4]	;

	 input	inB[4]	;

}

module	test_sig	{

	 reg	r1[8]	;

	 //	InA	and	inB	is	connected	and	it	transfers	to	r1.

	 r1	:=	{	inA,	inB	}	;

}

Description example 15 shows a description example of the bit coupling

The eight-bit signal that couples inA with inB is transferred to r1 .

As for the bit coupling, it can couple not only two signal lines but also multiple signals like

the example .

The bit width of the destination signal and the signal after coupling should be the same .

38 Overtone Corporation

NSL Reference Manual
Multiple signals can also be transferred collectively by performing bit connecting at the left-

hand side .

In that case, . is described before { } which indicates a connecting . The example is shown

in the following Description example 16 .

Description example 16. Bit connecting at left-hand side

declare	test_sig	{

	 input	inA[16];

	 output	outW[4]	;

	 output	outX[4]	;

	 output	outY[4]	;

	 output	outZ[4]	;

}

module	test_sig	{

	 reg	r1[4]	;

	 reg	r2[3]	;

	 reg	r3[5]	;

	 reg	r4[2]	;

.	{outW,outX,outY,outZ	}	=	inA	;	

	 //	inA	in	16-bit	width	is	divided	into	outW,	outX,	outY,	and	outZ	in	

4-bit	width	to	be	transferred.

	 //	outW	=	inA[15:12]	;	outX	=	inA[11:8]	;

	 //	outY	=	inA[7:4]	;	outZ	=	inA[3:0]	;	is	equivalent

.	{r1,r2,r3,r4}	:=	14'b0101_010_11100_11;	

	 //		A	value	in	14-bit	width	is	transferred	to	the	registers	r1,	r2,	

r3,	and	r4.

}

39Overtone Corporation

NSL Reference Manual
Next, it explains a description example of the reduction operation .

An example is shown in the following Description example 17 .

Description example 17. Description example of reduction operation

declare	test_red	{

}

module	test_red	{

	 reg	r1,	r2,	r3	;

	 wire	w1[4],	w2[4]	;

	 w1	=	4'b1010	;

	 w2	=	4'b0000	;

	 //	The	operation	result	of	reduction	operation	AND	of	w1	is

	 //	transferred	to	r1.

	 r1	:=	&w1	;		//	Reduction	AND	of	w1	is	transferred	to	r1.

	 //	The	operation	result	of	reduction	operation	OR	of	w2	is

	 //	transferred	to	r2.

	 r2	:=	|w2	;		//	Reduction	OR	of	w2	is	transferred	to	r2.	

	 //	The	operation	result	of	reduction	operation	EX-OR	of	w3	is

	 //	transferred	to	r3.

	 r3	:=	^w1	;		//	Reduction	EX-OR	of	w3	is	transferred	to	r3.

}

Description example 17 shows a description example of the reduction operation .

The reduction operation is an operator to perform the logical operation of every bit digit of

the bus .

For example, the reduction operator AND of 1010 in binary becomes 1 & 0 & 1 & 0, and the

answer is 1 bit (false).

Next, a description example of the logical operation is shown in Description example 18 .

40 Overtone Corporation

NSL Reference Manual
Description example 18. Description example of logical operation

declare	test_logic	{

	 input	inA[4]	;

	 input	inB[4]	;

}

module	test_logic	{

	 reg	r1,	r2,	r3	;

	 //	True	is	transferred	to	r1,	when	even	one	1	exists	in	inA	after	

	 //	logical	NOT,	and	false	transferred	it	in	all	other	cases.

	 r1	:=	!inA	;

	 //	True	is	transferred	to	r2,	when	even	one	1	exists	in	inA	and	inB	

	 //	after	logical	AND,	and	false	transferred	it	in	all	other	cases.

	 r2	:=	inA	&&	inB	;

	 //	True	is	transferred	to	r3,	when	even	one	1	exists	in	inA	and	inB	

	 //	after	logical	OR,	and	false	transferred	it	in	all	other	cases.

	 r3	:=	inA	||	inB	;

}

The logical operation has the three kinds of logical NOT, logical AND, and logical OR .

The logical operation is an operator that outputs true when even one 1 exists in an opera-

tion result, and outputs false in all other cases .

That is, the operation result of a logical operation becomes either of true or false, 1 or 0 of

a bit .

41Overtone Corporation

NSL Reference Manual
Repeat operation is explained next .

 Using repeat operation makes it possible to produce another bit sequence by repeating

arbitrary sequence optional number of times .

Description example of repeat operation is shown in the following Description example 19 .

Description example 19. Description example of repeat operation

declare	test_repeat	{

	 input	a[8];

	 output	rgb[24];

}

module	test_repeat	{

	 reg	r1[4];

	 reg	r2[8];

	 rgb	=	3{a};	

	 //	Repeating	input	signal	a	in	8	bits	3	times	to	make	a	bit	sequence	

in	24	bits,	and	output	it	to	rgb

	 r2	:=	2{r1};	

	 //	Repeating	register	r1	in	4	bits	2	times	to	make	a	bit	sequence	in	

8	bits,	and	output	it	to	r2

}

An integer without integer and bit width can be used for the repeat count of repeat operator,

and each signal of reg, wire, and variable, and an integer with bit width can be used for the

bit sequence to be repeated .

42 Overtone Corporation

NSL Reference Manual
Next, the description example of bit clipping out is presented .

In NSL, optional bit can be read out when a multibit signal exists . Description example 20 is

shown .

Description example 20. Description example of bit clipping out

declare	test_bit_div	{

	 input	inA[8]	;

	 input	inB[8]	;

}

module	test_bit_div	{

	 reg	r1[4],	r2[8],	r3[14]	;

	 	 	

	 //0~3rd	digit	of	inA	is	transferred	to	r1.

	 r1	:=	inA[3:0]	;

	 //	The	one	that	bit-couples	0th	bit	of	inA

	 //	with	0~6th	digit	of	inB	is	transferred	to	r2.

	 r2	:=	{	inA[0],	inB[6:0]	}	;

	 //	The	one	that	bit-couples	7th	bit	of	inA

	 //with	0~4th	digit	of	inB	and	inA	is	transferred	to	r3.

	 r3	:=	{	inA[7],	inB,	inA[4:0]	}	;	

}

Description example 20 is an example of the bit clipping out .

0~3rd digit of inA is transferred to r1 .

The one that bit-couples 0th bit of inA with 0~6th digit of inB is transferred to r2 .

The one that bit-couples 7th bit of inA with 0~4th digit of inB and inA is transferred to r3 .

In this way, it is possible to read it out by clipping out optional bit .

 For Verilog HDL or SystemC, if it transfers from a signal in wide bit width to another signal

in narrow bit width as it is without using a bit cutout, it is transferred while the high-order

bits being rounded down . Although the same description method can be used also in NSL,

please use a bit cutout when a bit width is converted since there are problems, such as

“becoming an error in VHDL” and “readability falling” .

In addition, the alignment sequence of bits can be reversed by describing a bit designa-

tion in [] at bit cutout in the order not corresponding to [large value: small value] but [small

value: large value] . Only the immediate value can be used for the digit designation in [] .

Example is shown in Description example 21 .

43Overtone Corporation

NSL Reference Manual
Description example 21. Description example of bit sequence reverse

declare	bit_field_reverse	{

	 input	a[8];

	 output	b[8],c[8];

}

module	bit_field_reverse	{

	 b	=	a[0:7];	//	Reversing	sequence	of	all	bits

	 c	=	{a[4:7],a[0:3]};	

	 //	Connecting	ones	of	which	sequence	was	reversed	by	4	bits	each

}

This	NSL	code	is	synthesized	into	the	following	Verilog-HDL	code.

module	bit_field_reverse	(p_reset	,	m_clock	,	a	,	b	,	c);

	 input	p_reset,	m_clock;

	 input	[7:0]	a;

	 output	[7:0]	b;

	 output	[7:0]	c;

	 assign	b	=	{{{{{{{a[0],a[1]},a[2]},a[3]},a[4]},a[5]},a[6]},a[7]};

	 assign	c	=	{{{{a[4],a[5]},a[6]},a[7]},{{{a[0],a[1]},a[2]},a[3]}};

endmodule

44 Overtone Corporation

NSL Reference Manual
Next, a description example of the designation of bit width is shown in the following De-

scription example 22 .

Description example 22. Description example of designation of bit width

declare	test_bit_width_assign	{

	 input	inA[8]	;

	 input	inB[8]	;

}

module	test_bit_width_assign	{

	 reg	r1[16]	;

	 reg	r2[4]	;

	 r1	:=	16'(inA)	;	

	 //		inA	is	extended	to	16	bits,	and	transferred	to	r1

	 r2	:=	4'(inB)	;	

	 //		inB	is	reduced	to	4	bits,	and	transferred	to	r2

}

 When the bit width of the destination is larger than that of the source (bit extension), it is

made a signal in the target bit width filling up the high-order side is with 0.

When the bit width of the destination is smaller than that of the source (bit reduction), it is

transferred by cutting out the target bit width from 0th bit .

Please note that a bit width after being changed is designated for both extension and re-

duction .

For example, 8’(4’b1010) becomes 8’b00001010, and 4’(8’b10100101) does 4’b0101.

However, it is not permitted to write it clipping out optional bit of the register because it de-

creases in readability .

45Overtone Corporation

NSL Reference Manual
Next, a description example of bit width extension is shown in the following Description ex-

ample 23 .

Description example 23. Description example of sign extension

declare	test_bit_ext	{

	 input	inA[8]	;

	 input	inB[8]	;

}

module	test_bit_ext	{

	 reg	r1[16]	;

	 reg	r2[16]	;

	 r1	:=	16#(inA)	;	

	 //	inA	is	extended	to	16	bits	in	bit	width	with	sign,	an	dtransferred	

to	r1

	 r2	:=	16'(inB)	;	

	 //	 inB	 is	 extended	 to	 16	 bits	 in	 bit	 width	 with	 no	 sign,	 an	

dtransferred	to	r2

}

The sign extension is an operator that extends a signal to an optional bit width while as-

suming the first bit of the signal to be a sign bit, and maintaining the sign.

When the first bit of the signal is 0, 0 is added to the extended bit.

When the first bit of the signal is 1, 1 is added to the extended bit.

For example, when the numerical value of 4'b0101 is sign-extended to 8 bits, it becomes

8'b00000101, and when 4'b1010 is done to 8 bits, it becomes 8'b11111010 .

 Bit width extension without sign is the same as the bit width designation operator above

mentioned, and extends a signal to in arbitrary bit width adding 0 to the head regardless of

the first bit of the signal.

When the numerical value of 4’b0101 is extended to 8 bit in bit width with no sign, it be-

comes 8’b00000101, and when 4’b1010 is extended to 8 bit in bit width with no sign, it be-

comes 8’b00001010 . if mark-less bit width extension is carried out at a bit .

In both cases, please note that a bit width after being extended is designated to extend the

bit width .

Conditional operation
The conditional operation is used at the right-hand side of a transfer, and it is an operation

to implement a case analysis to the signal and the value to be transferred .

46 Overtone Corporation

NSL Reference Manual
This operation is described as follows using the operators, “if” and “else” .

if	(Condition)	<Signal_and_value>	else	<Signal_and_value>

When the conditional expression described in () just after “if” is true, the signal and the val-

ue just after “if” are used for the operation .

When the conditional expression is false, the values just after “else” are used for the opera-

tion .

The point to be noted is that “else” is indispensable .

Description example of the conditional operation is shown in the following Description ex-

ample 24 .

47Overtone Corporation

NSL Reference Manual
Description example 24. Description example of conditional operation

declare	test_right_if	{

	 input	a[3],	b[3]	;

	 input	trigger	;

	 output	f[3],	g[3]	;

}

module	test_right_if	{

	 	 //If	trigger	is	true	“a”	is	transferred,

	 	 //	and	if	false	“b”	is	transferred.

	 f	=	if(trigger)	a	else	b	;

	 	 //If	trigger	is	true	“a+b”	is	transferred,

	 	 //	and	if	false	“a+1”	is	transferred.

	 g	=	a	+	if(trigger)	b	else	0b001	;

}

Block
The action description indicates the area where the behavior of an atomic action is deter-

mined in NSL .

Here, it explains the block to be the basic of NSL description among the action descrip-

tions .

The block is a syntax that defines a starting point and an ending point of the block, and

changes the behavior of an atomic action in the block area .

In NSL, a system is configured using this block.

In addition, it explains about the action description of "control terminal", "submodule", "pro-

cedure", "state", and "memory", that becomes in the applied edition among the action de-

scriptions in the following Chapters 6~10 .

Types of the block are listed in the following Table 5-2 and 5-3 . The block that can be used

anywhere is listed in Table 5-2, and the one that can be used in a special condition is listed

in Table 5-3 . The block listed in Table 5-2 is explained in this chapter .

(The block listed in Table 5-3 is explained in Chapter 7.)

48 Overtone Corporation

NSL Reference Manual
Table 5-2. The block that can be used anywhere

parallel operation block { }
alt block alt { }
any block any { }
if block if (condition) else

Table 5-3. The block that can be used in a special condition

seq block seq { } //Only in the function action
while block while (condition) { } //Only in the "seq" block
for block for(init variable ; condition; change variable) { } //Only in the "seq" block

Description of parallel operation block
The parallel operation block is a block that operates all the atomic actions in the block in

parallel .

Declaration of internal structure elements can be described at the head of a block . The ele-

ments declared in the block can be referred to from other blocks after the declaration . How-

ever, only the state variable of a state machine cannot be referred to from other blocks .

Parallel operation block is a block which operates all unit actions in a block in parallel . The

description method of a parallel operation block is shown below .

{

 Declaration of internal structure element

Atomic_action1

 Atomic_action2

 ...

 Atomic_actionX

}

The parallel operation block is used when a parallel description is written in a block where it

describes the atomic action such as "alt”, "any”, "if”, and "seq”, etc .

”alt” block
The "alt" block is an abbreviation of "alternative" block, and a block where the acceptable

operation starts .

Since the "alt" block is a conditional branching, relational operations of the operator are

used .

The relational operation indicates the relation between the left-hand side and the right-hand

side, and the condition is approved when the relation between the left-hand side and the

49Overtone Corporation

NSL Reference Manual
right-hand side is true .

When the relation between the left-hand side and the right-hand side is false, the condition

ends in failure .

Description method of the conditional expression is as follows .

Left-hand_expression	Relational_operator	Right-hand_expression

"alt", "any", and "if" block judge the conditional expression using this relational operation .

A priority level exists in the "alt" block operation . Only the top operation in order of the de-

scription starts even when multiple acceptable operations exist .

In addition, "else" can be described as an action description when all conditions are not ac-

ceptable . "else" may be omitted . Description method of the alt block is as follows .

alt	{

	Condition1:	atomic_action1		 //priority	level	high

	Condition2:	atomic_action2

	...

	ConditionN:	atomic_actionN		 //priority	level	low

	else				 	:	atomic_actionX

}

The following description example of "alt" block is shown in Description example 25 .

50 Overtone Corporation

NSL Reference Manual
Description example 25. Description example of "alt" block

declare	test_alt	{

	 input	in_a[4]	;

	 output	out_b[4]	;

}

module	test_alt	{

	 reg	reg_c[4]	;

	 //	Common	action	description	begin.

	 alt{

	 	 //	If	the	condition	is	truth,	1111	is	transferred	to	reg_c.

	 	 in_a[3]	==	1'b1	:	reg_c	:=	4'b1111	;

	 	 //	If	the	condition	is	truth,	1010	is	transferred	to	reg_c.

	 	 in_a[2]	==	1'b1	:	reg_c	:=	4'b1010	;

	 	 //	If	the	condition	is	truth,	0101	is	transferred	to	reg_c.

	 	 in_a[1]	==	1'b1	:	reg_c	:=	4'b0101	;

	 	 //	Parallel	action	block	usage	example	condition	branching	ahead.

	 	 in_a[0]	==	1'b1	:	{

	 	 	 reg_c	:=	4'b0001	;

	 	 	 out_b	=		4'b1111	;

	 	 }

	 }	

}

In addition, multiple atomic actions can be described after the condition transited by de-

scribing a parallel operation block in the alt block . This can be applied also to other condi-

tional syntax .

”any” block
The "any" block is a conditional operation block where the acceptable operation starts .

Differing from the alt block, there is no priority level for the conditional operations in the

"any" block, and all the acceptable operations start .

In addition, "else" can be described as an action description when all the conditions are not

acceptable . "else" may be omitted .

Description method of the "any" block is as follows .

any	{

	Condition1:	atomic_action1

	Condition2:	atomic_action2

	...

	ConditionN:	atomic_actionN

51Overtone Corporation

NSL Reference Manual
	else						:	atomic_actionX

}

Description example of the "any" block is shown in Description example 26 .

Description example 26. Description example of "any" block

declare	test_any	{

	 input	in_a[4]	;

}

module	test_any	{

	 reg	r1[4],	r2[4],	r3[4],	r4[4],	r5[4]	;

	 //	Common	action	description	begin.

	 any{

	 	 	 //	If	the	condition	is	truth,	1111	is	transferred	to	r1.	

	 	 in_a[3]	==	1'b1	:	r1	:=	4'b1111	;

	 	 	 //	If	the	condition	is	truth,	1010	is	transferred	to	r2.	

	 	 in_a[2]	==	1'b1	:	r2	:=	4'b1010	;

	 	 	 //	If	the	condition	is	truth,	0101	is	transferred	to	r3.

	 	 in_a[1]	==	1'b1	:	r3	:=	4'b0101	;

	 	 	 //	If	the	condition	is	truth,	0001	is	transferred	to	r4.	

	 	 in_a[0]	==	1'b1	:	r4	:=	4'b0001	;

	 	 	 //	If	all	conditions	are	false,	0000	is	transferred	to	r5.

	 	 else																	:	r5	:=	4'b0000	;

	 }	

}

Describing in this way, it can achieve a conditional judgment circuit that uses the "any"

block .

”if” block
The "if" syntax exists in a special model of the "any" block .

As for the "if" syntax, when it is the same operation as the "any" syntax with only one con-

dition, that is when the condition is true, the operation indicated with an action description

starts .

In addition, "else" is described as an action description when the condition is not accept-

able . "else" may be omitted .

Description method of the "if" block is as follows .

if	(condition)	atomic_action1

else		 	 	 	 	 atomic_action2

52 Overtone Corporation

NSL Reference Manual
Description example 27. Description example of "if "block

declare	test_if	{

	 input	in_a[4]	;

}

module	test_if	{

	 reg	r1[4],	r2[4],	r3[4],	r4[4],	r5[4]	;

	 if(in_a[3]	==	1'b1)		 r1	:=	4'b1111	;

	 if(in_a[2]	==	1'b1)		 r2	:=	4'b1010	;

	 if(in_a[1]	==	1'b1)		 r3	:=	4'b0101	;

	 if(in_a[0]	==	1'b1)		 r4	:=	4'b0001	;

	 else																	 r5	:=	4'b0000	;

}

Describing in this way, it can use the "if" block .

In addition, Description example 26 and Description example 27 indicates an equivalent cir-

cuit .

53Overtone Corporation

NSL Reference Manual

Chapter 6
6. Construct "generate”

In a synthesis from NSL to RTL, a processing by preprocessor called structural expansion

is performed between a directive expansion by preprocessor (Refer to Appendix 1) and a

synthesis of circuit description by a structure element .

Structural expansion is expanded in order of the described regardless of the element of cir-

cuit description .

Using a structural expansion makes it possible to reduce the amount of description when

producing the similar, multiple circuits significantly.

Structure syntax is prepared in order to realize a structural expansion .

Structure syntax generate
Structure syntax generate is a syntax which differs from for in seq block, and becomes an

action at the same clock performing a structural expansion of the inside of a generate syn-

tax when compiling to a lower language . The structure syntax generate is described as fol-

lows .

Initial value of loop variable; loop conditional formula; change

value of loop variable

Only integer variable of integer, which is described later can be used for loop variable .

The structure syntax “generate” is expanded in following procedure .

1 . Initial value is set to loop variable

2 . Conditional formula is judged, and it goes to 3 in case of true, and ends for false

3 . Structural expansion of behavioral description

4 . Change value is updated, and goes to 2

Example of structure syntax of generate is shown in the following Description example 28 .

54 Overtone Corporation

NSL Reference Manual
An example of the construct "generate” is shown in the following Description example 28 .

Description example 28. Structure syntax generate

declare	x	{

	 output	f[8];

}

module	x	{

	 integer	i;

	 variable	v[8];

generate(i=0;i<10;i++)	{

	 v=v+i;

}

	 f	=	v;

}

generate(i=0;i<10;i++){

	 v=v+i;

}

↓

v1	=	v0	+	0	;

v2	=	v1	+	1	;

v3	=	v2	+	2	;

v4	=	v3	+	3	;

v5	=	v4	+	4	;

v6	=	v5	+	5	;

v7	=	v6	+	6	;

v8	=	v7	+	7	;

v9	=	v8	+	8	;

v	=	v9	+	9	;

In a structure syntax, the inside of a generate syntax is expanded as 1-clock action .

That is, Example 28 shows that it is expanded after structural expansion like the right list,

and 45 (8’b0100_0101) is transferred to v finally.

Using this structure syntax makes it easy to expand a barrel shifter, and a multiplication,

etc .

Structure syntax if
Structure syntax if can be used when wanting to change a circuit to be used according to

the state of an integer variable in generate, etc .

Structural expansion of if block of which condition consists only of integer variable is per-

formed as a structure syntax .

Structure syntax if is described as follows .

if (Integer variable condition) unit action 1

else unit action 2

When the integer variable condition is true, unit action 1 is synthesized, and unit action 2 is

synthesized for false .

Example of structure syntax if is shown in Description example 29 .

55Overtone Corporation

NSL Reference Manual
Description example 29. Description example of structure syntax if

//	Randam	Generator

declare	glfsr	{

	 func_in	next_rand;

	 output	q[16];	//	Output	of	random	numbers

}

module	glfsr	{

	 reg	r[16]	=	0x39a5;	//	Form	of	random	numbers

	 variable	v[16];

	 integer	i;

func	next_rand	{

	 generate	(i=0;i<15;i++)	{

	 	 if((i	==	13)	||	(i	==	12)	||	(i	==	10))	{

	 	 	 v[i]	=	r[i+1]	^	r[0];	

	 	 	 //	This	is	selected	when	I	is	13,	12,	10

	 	 }	else	{

	 	 	 v[i]	=	r[i+1];	

	 	 	 //		This	is	selected	when	i	is	other	than	13,	12,	11

	 	 }	

	 //	 Since	 partial	 substitution	 is	 performed,	 a	 variable	 terminal	 is	

used.

	 }

	 v[15]	=	r[0];

	 r:=v;

	 q	=	r;

}

}

 Integer variable Integer
Integer variable integer is declared as follows .

integer Name of integer variable

integer is declared in the declaration portion of an internal structure element . Integer vari-

able integer accepts the input of 32-bit integer with sign .

56 Overtone Corporation

NSL Reference Manual
Temporary terminal variable
Declaration method of a temporary terminal variable is as follows .

variable Name of temporary terminal [bit width]

variable is declared in the declaration portion of an internal structure element . The bit width

of variable may be omitted . When it was omitted, it becomes in 1-bit width . Temporary ter-

minal variable differs from internal terminal, and it can share the same terminal name .

And, variable does not an initialization, and the initial value is set to 0 at its declaration . As

for a substitution into a temporary terminal, an integer can be used for the right-hand side

when there is no ambiguity in syntax .

Moreover, an integer is permitted for the 2nd term when the number of bits can be decided

at the time of compiling with 2-term operation . An integer is permitted to an item .

As a feature of temporary terminal, a partial substitution, which is not permitted for other

terminals is possible .

Example of partial substitution is shown in Description example 30 .

Description example 30. Description example of partial substitution into temporary

terminal

declare	subrange	interface	{

	 input	a[8];

	 output	f[8];

}

module	subrange	{

	 variable	v[8];

	 v[3:0]	=	a[7:4];

	 v[7:4]	=	a[3:0];

f=v;

}

57Overtone Corporation

NSL Reference Manual

Chapter 7
7. Action description of control terminal

Declaration method of the control input terminal and control output terminal is explained in

Chapter 2, and that of the control internal terminal was done in Chapter 4 .

Action description of the control input terminal, the control output terminal, and control inter-

nal terminal is explained in this chapter .

In the language specification of NSL, path of the control and flow of the data are treated

separately. That is, path of the control is described besides the flow of the data such as "in-

put", "output", and "inout" . The control terminal is a line that describes a path of the control .

There are three kinds of the control terminal .

That is, it involves the control input terminal that is a control signal to come in NSL module,

the control output signal that is a control signal to go out from NSL module, and the control

internal terminal that is a signal to describe the control inside NSL .

Control internal terminal
Since the control internal terminal is a control terminal that describes the control in the

module, it can call a function only in the declared module . It describe as follows when a

control internal terminal is called while describing an action .

Name_of_internal_terminal()

The function is activated by same clock when it was called .

In addition, it is possible for a control internal terminal to which a dummy argument was

given to have an actual argument when it is called in the module . When an actual argument

is given and a function is called, the actual arguments are listed in () after the name of the

control internal terminal .

Name_of_control_internal_terminal(actual_argument,	actual_argu-

ment,	actual_argument,	...)

Function of the control internal terminal is described as follows .

func	Name_of_control_internal_terminal	Action_description

Action description of the function may be omitted .

In addition, a declared control internal terminal can also be called without function . The

control internal terminal called at this time becomes 1 at the same clock when called, and

becomes 0 with the next clock . Moreover, it is always 0 when it is not called .

The following Description example 31 shows a description example of the control internal

terminal .

58 Overtone Corporation

NSL Reference Manual
Description example 31. Description example of control internal terminal

declare	func_test{

	 input	a[4]	;

	 input	b[4]	;

	 output	f[4]	;

}

module	func_test{

	 func_self	func_do	;		 //	Control	input	terminal	is	declared

	 //	Common	action	description	begin

	 func_do()	;		 	 	 	 //	Call	control	input	terminal

	 //	Control	input	terminal	description

	 func	func_do	{

	 	 f	=	a	|	b	;

	 }

}

In this way, the function is activated only after the declaration of control internal terminal,

the function description, and the function call were arranged .

Control input terminal
The control input terminal is a signal of the control terminal that comes in from the outside

of a module .

The control terminal coming in from the outside of a module is called a control input signal,

and it can initiate a function in the module from the outside of the module . When a function

is generated, it must be named as the same name of the declared control input terminal .

Description method of the function is as follows .

func	Name_of_control_input_terminal	Action_description

The function may be omitted .

In addition, differing from the case of the control internal terminal, since the control input

terminal waits for an input of the control terminal from the outside of the module, it cannot

be called from the same module where the control input terminal was declared .

And, the control input terminal called from the outside becomes 1 at the same clock when

called, and becomes 0 with the next clock . Moreover, it is always 0 when it is not called .

Description example of the control input terminal is listed based on this description method

and the declaration method in Chapter 2 .

59Overtone Corporation

NSL Reference Manual
Description example 32. Description example of control input terminal

declare	func_in_test{

	 input	a	;

	 input	b	;

	 output	f	;

	 func_in	func_do	;	

}

module	func_in_test{

	 func	func_do	f	=	a	|	b	;

}

Describing as directed in Description example 31, the function "func_do” is activated when

the control input terminal func_do was called .

Control output terminal
The control output terminal is a signal of the control terminal to be put outside the module .

This can give the dummy argument to the same way as other control terminals with the

control terminal to control an outside module .

This is a control terminal to control the external module, and the dummy argument can be

given as well as other control terminals .

When a control output terminal is called with module, it describes as follows .

Name_of_control_output_terminal()

The control output terminal is activated with the same clock when called .

In addition, when a control output terminal to which dummy argument was given is called in

a module, actual argument can be given . When it is called by giving an actual argument, it

is done as follows .

Name_of_control_output_terminal(actual_argument,	actual_argument,	

actual_argument,	...)

There is no function description since the operation of the control output terminal is outside

the module .

Description example of the control output terminal is shown in Description example 33 .

60 Overtone Corporation

NSL Reference Manual
Description example 33. Description example of control output terminal

declare	func_out_test{

	 input	a	;

	 input	b	;

	 output	f	;

	 func_out	func_do(f)	;

}

module	func_out_test{

	 if(a	&	b)	func_do(1'b1)	;

}

Describing in this way, it becomes possible to output the control output terminal toward the

outside .

Here, it is output outside while the dummy argument f, and the actual argument 1 were giv-

en to the control output terminal .

Then, it can achieve an operation to output the actual argument 1 outside through the dum-

my argument f .

“seq” block
Next, it explains the “seq” block that can be used only in a function action .

The “seq” block is an abbreviation of “sequential” block, and in this block, the action

description starts with each syntax at every clock in order of the top of being described .

Moreover, the first operation is executed with the same clock when it was activated.

The “seq” block is located in the top-level block, and when it wants to call a “procedure”

from the “seq” block, the next atomic action in the “seq” block is activated after waiting for

the end of the “procedure” that was called .

Moreover, when the “seq” block is activated again while the “seq” block is being activated,

both of the “seq” are to be activated at the same time . Therefore, a pipeline can be

configured.

Description example of the “seq” block is shown as follows .

seq	{

 Atomic_action 1

 Atomic_action 2

 Atomic_action 3

 ...

 Atomic_action X

61Overtone Corporation

NSL Reference Manual
}

Types of the syntax in “seq” block are listed in the following Table 7-1
label Declare the label in the “seq” block
goto Move to the label position
while Conditional loop block
for Conditional loop block with loop variable

Label , Goto
It can define a label in a “seq” block, and move it to the label position with “goto”.

It is indispensable to declare the label in the “seq” block to be used .

Description method of the label is as follows .

label_name	Label_name

Definition of the label in a “seq” block is described as follows.

Label name :

And, it describes in the same “seq” block as follows when it is moved to the label position .

goto	Label_name	;

One clock is used for a transition process that uses a “goto” syntax .

Description example of the label is as follows .

seq	{

		 label_name	Label_name1,	label_name2

		 Atomic_action1

		 goto	Label_name2

	Label_name1	:

 Atomic_action2

 Atomic_action3

	Label_name2	:

		 Atomic_action4

		 goto	Label_name1

}

Description example .34 is shown as a description example of the “seq” block .

62 Overtone Corporation

NSL Reference Manual
Description example.34 Description example of “seq” block

declare	test_seq	{

	 input	a[4],	b[4]	;

	 output	f[4]	;

	 func_in	exec_add	;

}

module	test_seq	{

	 reg	opr1[4],	opr2[4],	result[4]	;

	

	 function	exec_add	seq	{

	 	 {	//Parallel	operation	block.		It	starts	at	the	first	clock.

	 	 	 opr1	:=	a	;

	 	 	 opr2	:=	b	;

	 	 }

	 	 result	:=	opr1	+	opr2	;	//	It	starts	at	the	second	clock.

	 	 f	=	result	;	 	 	 	 	 //	It	starts	at	the	third	clock.

	 }

}

Describing in this way, it can achieve a sequential execution circuit that uses the “seq”

block .

As for the operation of “seq” block shown in Description example 34, calling “exec_add”

starts to execute the first line of the “seq” block first at the first clock . And, it starts to

execute the second line at the second clock, and the third line at the third clock .

In accordance with the above action flow, it starts to execute it in order. The execution ends

in series when it started to execute the final line of the “seq” block.

In addition, it becomes a pipeline process in case of the module “test_seq” when “exec_

add” is called again while the “seq” block is executing it in series by having called “exec_

add” once .

An example using the label is shown in the following Description example .35 .

63Overtone Corporation

NSL Reference Manual
Description example.35 Description example of “seq” block:label

declare	test_label	{

	 output	f[4]	;

	

	 func_in	exec_label	;

}

module	test_label	{

	 reg	r1[4]=0	;

	 function	exec_label	seq	{

	 	 label_name	label1,	label2	;	//Labels	of	label1,	label2	are	declared.

	 	

	 	 	 goto	label2	;			 	 	 //It	executes	from	label2	at	the	next	clock.

	 	 	

	 	 label1	:			 	 	 	 	 	 //label1	is	presented.

	 	 	 	 r1++	;

	 	 label2	:			 	 	 	 	 	 //label2	is	presented.

	 	 	 if(r1	==	10)	f	=	r1	;

	 	 	 goto	label1	;			 	 	 //	It	executes	from	label1	at	the	next	clock.

	 }

}

“while” block
The “while” block exists as a syntax only in the “seq” block . The “while” block is used as a

conditional loop syntax .

The “while” block ends with no activation if the condition is false before starting the

operation .

The “while” block is activated in order of the top of being described if the condition is true

before starting the operation .

When all the operations in the “while” block ended, it is confirmed again whether the

condition is true, and if it is true, the operation starts from the beginning of the “while” block

again, and if it is false, the operation of the “while” block ends .

Parentheses {} of the block is indispensable even for only one action to clarify that it is a

sequential action .

Action description example of the “while” block is as follows .

while	(Condition)	{

 Atomic_action1

64 Overtone Corporation

NSL Reference Manual
 Atomic_action2

 ...

 Atomic_actionX

}

In addition, the “while” block uses one clock each for a conditional judgment and an

operation transition .

Please refer to the following Description example 36 and 37 for details of the clock .

First, a description example of the “while” block is shown in the following Description

example 36 .

Description example 36. Description example of “while” block

declare	test_while	{

	 input	count_end_sig	;

	 func_in	exec_count	;

	 func_out	count_end_call	;

}

module	test_while	{

	 reg	cnt[8]	=	0	;

	 function	exec_count	seq	{

	 	 //Starting	loop	of	“while”	syntax

	 	 while	(~count_end_sig)	{

	 	 	 cnt	:=	cnt	+	0x01	;

	 	 }

	 	 count_end_call()	;

	 }

}

In Description example 36, the function “exec” is called infinitely often as long as it satisfies

the condition of the “while” block .

Description example 37 is the one that Description example 36 was rewritten into a form

where the clock is easily seen with the “seq” block .

Description example 36 and Description example 37 indicate an equivalent circuit .

65Overtone Corporation

NSL Reference Manual
Description example 37. Detailed operation of “while” block

declare	test_while	{

	 input	count_end_sig	;

	 func_in	exec_count	;

	 func_out	count_end_call	;

}

module	test_while	{

	 reg	cnt[8]	=	0	;

	 function	exec_count	seq	{

	 	 label_name	label1,	label2	;

	 	 label1	:

	 	 	 if(count_end_sig)	goto	label2	;

	 	 	 {

	 	 	 	 cnt	:=	cnt	+	0x01	;

	 	 	 	 goto	label1	;

	 	 	 }

	 	 label2	:

	 	 	 count_end_call()	;

	 }

}

“for” block
The “for” block exists as a syntax limited to the use in the “seq” block .

The “for” block is used as a conditional loop syntax as well as the “while” block .

Action in the block is executed every one clock in series while changing the loop variable

like the “for” syntax of C language .

Register (reg) is used for the loop variable.

Please note that it cannot be a sequential execution if other type of signal is used for the

loop variable .

Action description example of the “for” block is as follows .

for(initial_value;	condition;	changed_value){

 Atomic_action1

 Atomic_action2

 ...

 Atomic_actionX

}

66 Overtone Corporation

NSL Reference Manual
The “for” block sets an initial value to the loop variable first.

And, the operation in the “for” block is activated when the conditional expression is true .

In addition, the action in the “for” block ends without being activated when the conditional

expression is false .

When the “for” block was activated, the atomic action is activated one by one at every clock

in order of the top of being described in the block .

When all the atomic actions in the “for” block ended, the conditional expression is

compared after updating the value of change .

And, if the conditional expression is true, the operation in the “for” block is activated again,

and if false the “for” block ends on the spot .

The “for” block uses one clock each for the conditional judgment and the operation

transition .

In addition, the parentheses {} of the block is indispensable even for only one action to

clarify that it is a sequential action as well as the “while” .

Description example of the “for” block is shown as follows .

Description example 38. Description example of “for” block

declare	test_for	{

	 func_in	exec_sum	;

	 func_out	exec_end_call	;

}

module	test_for	{

	 reg	i[4]	=	0	;

	 reg	sum[8]	=	0	;

	

	 function	exec_sum	seq	{

	

	 	 //	Starting	loop	with	i	of	“for”	syntax	as	a	loop	variable.

	 	 for(i:=0	;	i<10	;	i++)	{

	 	 	 sum	:=	sum	+	{	0x0,	i}	;

	 	 }

	 	

	 	 //It	calls	end	of	“exec”	with	“func_out”.

	 	 exec_end_call()	;

	 }

}

Description example 39 is the one that the “for” block in Description example 38 was

rewritten into a form where the clock is easily seen using the “seq” block .

67Overtone Corporation

NSL Reference Manual
Description example 38 and Description example 39 indicate an equivalent circuit .

Description example 39. Detailed operation of “for” block

declare	test_for	{

	 func_in	exec_sum	;

	 func_out	exec_end_call	;

}

module	test_for	{

	 reg	i[4]	=	0	;

	 reg	sum[8]	=	0	;

	

	 function	exec_sum	seq	{

	 	 label_name	label1,	label2	;

	 	 	 	 i	:=	0x0	;

	 	 label1	:

	 	 	 if(i<10)	goto	label2	;

	 	 	 {

	 	 	 	 sum	:=	sum	+	{	0x0,	i	}	;

	 	 	 	 goto	label1	;

	 	 	 }

	 	 label2	:

	 	 	 exec_end_call()	;

	 }

}

68 Overtone Corporation

NSL Reference Manual

Chapter 8
8. Action description of SUBMODULE

Declaration of the submodule is explained in Chapter 4 . Action description of the

submodule is explained in this chapter .

As previously mentioned, the submodule is a syntax that achieves a hierarchical structure .

In NSL, each terminal of the lower module can be operated from a higher module, and data

can be passed from a lower module to a higher module .

Submodule declaration specifies a template of the submodule, and describes a name to be

made substantial in a higher module of the template . The one that the template was made

substantial in the higher module is called "instance" .

When it specifies each terminal such as data and control terminal, etc. of the submodule, it

is described as follows .

Instance_name.Terminal_name

Using this description makes it possible to read, and transfer the value of the lower module.

In addition, it is also possible to call the control terminal of the lower module . When a con-

trol input terminal of the lower module is called, it describes as follows .

instance_name.Name_of_control_input_terminal()

When actual argument is given to a control input terminal of the lower module, it is de-

scribed as follows .

instance_name.Name_of_control_input_terminal(<actual_argument>,	

<actual_argument>,	<actual_argument>,	...)

It is delimited with a comma ", " when multiple actual arguments are given .

And, when the output signal is received at the same time as calling the control input termi-

nal, it is described as follows .

instance_name.Name_of_control_input_terminal(<actual_argument>).

Name_of_output_terminal

Description example 40, a description example of the submodule syntax is shown as fol-

lows .

69Overtone Corporation

NSL Reference Manual
Description example 40. Description example of submodule syntax

declare	sub_test	{

	 input	inA[16]	;

	 input	inB[16]	;

	 input	inC[16]	;

	 input	inD[16]	;

	 output	outE[16]	;

	 func_in	calc1(inA,	inB)	;

	 func_in	calc2(inC,	inD)	;

}

module	sub_test	{

	 reg	reg1[16]	;

	 func	calc1	reg1	:=	inA	&	inB	;

	 func	calc2	outE	=	inC	+	inD	;

}

declare	main_test	{

	 input	in_val1[16]	;

	 input	in_val2[16]	;

}

module	main_test	{

	 reg	result[16]	;

	 sub_test	SUB	;	//	Temprate	"sub_test"	of	submodule	is	instantiated.

	 //	Common	action	description

	 //	In_val1	and	in_val2	are	passed	as	an	argument	and

	 //	calc1	of	sub_test	is	called.	

	 SUB.calc1(in_val1,	in_val2)	;

	 //	The	value	that	passes	in_val1	and	in_val2	as	an	argument	and	

	 //	outputs	it	from	outE	of	calc2	of	sub_test	to	result.	

	 result	:=	SUB.calc2(in_val1,	in_val2).outE	;

}

Describing as directed in Description example 40, it is possible to achieve the submodule

syntax .

The submodule syntax in Description example 40 made the "sub_test" module a template,

declared it as SUB in the "main_test" module, and assumes it to be an "instance".

In addition, in the action description in "main_test", it calls the function in SUB that is an

"instance", makes SUB work, and stores the returned value in the register that is named

"result" .

70 Overtone Corporation

NSL Reference Manual

Chapter 9
9. Action description of PROCEDURE

Declaration method of the "procedure" is described in Chapter 4 . Action description part of

the "procedure" is explained in this chapter .

As previously mentioned, the "procedure" is a syntax that provides the control that uses the

state transition, the pipeline, and the sequential circuit, and the syntax continues to operate

until it transits to other "procedures", or the end is declared when it was once activated .

When the "procedure" is activated, or it transits to another "procedure" in the "procedure", it

describes as follows .

The "procedure" actually starts the activation from the next clock that proposed the activa-

tion .

Name_of_procedure()

And, it describes as follows when an operation in the "procedure" is described .

proc	Name_of_procedure	{

	Atomic_action1	;

	Atomic_action2	;

	...

	Atomic_actionX	;

}

When a "procedure" is ended, it describes in the "procedure" as follows .

finish

The "procedure" ends at the clock next to the one when "finish" was declared.

A description example of the "procedure" is shown in the following Description example 41 .

71Overtone Corporation

NSL Reference Manual
Description example 41. Description example of "procedure"

declare	proc_test{

	 input	a[4]	;

	 input	b[4]	;

	 output	f[4]	;

	 func_in	start	;

}

module	proc_test{

	 reg	r1	=	1'b0,	r2	=	1'b0,	r3	=	1'b0	;

	 reg	result[4]	=	4'b0000	;

	 proc_name	idle()	;						//	Procedure	"idle"	is	declared.

	 proc_name	calc()	;						//	Procedure	"calc"	is	declared.

	 proc_name	out_data()	;	 //	Procedure	"out_data"	is	declared.

	 //	Common	action	description

	 r1	:=	r2	;

	 r2	:=	r3	;

	 r3	:=	1'b1	;

	 if(^r1	&	r2	&	r3)	idle()	;

	 //	Procedure	"idol"	action	description

	 proc	idle	{

	 	 if(start)	calc()	;

	 }

	 	

	 //	Procedure	"calc"	action	description

	 proc	calc	{

	 	 result	:=	a	+	b	;

	 	 out_data()	;

	 }

	 	

	 //	Procedure	"out_data"	action	description

	 proc	out_data	{

	 	 f	=	result	;

	 	 idle()	;

	 }

}

Describing as directed in Description example 41, it can achieve the "procedure" .

In Description example 41, the "procedure" is used as a state transition .

A pipeline can be achieved by continuously calling the "procedure" .

72 Overtone Corporation

NSL Reference Manual

Chapter 10
10. Action description of state

Declaration method of the state is explained in Chapter 4 . Action description of the state is

explained in this chapter .

The following method is used when internal operation of the state is described .

state	State_name	Operation

First, the state declared first is activated immediately after the module was activated.

When the state was once activated, it continues to operate until it moves to another state .

When multiple states were declared, "goto" syntax is used when another state is activated

(transits) from the state being activated. Usage of "goto” syntax is shown as follows.

goto	State_name

With this "goto", another state can be activated . When it moved to another state, the original

state stops .

In addition, since the state being activated is maintained, when the declaration destination

is a "procedure", and the "procedure" being activated transited, and activated again, it starts

from the state having been activated until just before not the state declared first.

Moreover, action description for the state can be done only in the place where it was de-

clared . The place where the state can be declared is as follows .

• In parallel operation block

• In procedure

A description example of the state is shown in the following Description example 42 .

73Overtone Corporation

NSL Reference Manual
Description example 42. Description example of state

declare	state_test	{

	 input	a[4]	;

	 input	b[4]	;

	 output	f[4]	;

	 func_in	start()	;

}

module	state_test	{

	 reg	cnt_val	[4]	=	4'b0000	;

	 state_name	idle,	count,	calc	;	//	Declareration	state.

	 state	idle	{	 	 	 	 	 	 	 	 //	State	"idol"	action	description

	 	 if(start)	goto	count	;

	 }

	 state	count	{		 	 	 	 	 	 	 //	State	"count"	action	description

	 	 any{

	 	 	 cnt_val	==	4'b1111	:	{

	 	 	 	 cnt_val	:=	4'b0000	;

	 	 	 	 goto	calc	;

	 	 	 }

	 	 	 else															:	{

	 	 	 	 cnt_val	:=	cnt_val	+	4'b0001	;

	 	 	 }

	 	 }

	 }

	 state	calc	{	 	 	 	 	 	 	 //	State	"calc"	action	description

	 	 f	=	a	+	b	;

	 	 goto	idle	;

	 }

}

Describing in this way, the state can be achieved .

The difference from the "procedure" is that it can be used also in the common operation

part and the "procedure" .

In addition, when it was used in the "procedure", it is different in the part of memorizing the

state when the "procedure" ended .

When a state is used in the "procedure", since the state memorizes the state condition

when the original "procedure" transited even when it transited to another "procedure" and

returned to the original "procedure", it is possible to start from a condition on the way .

74 Overtone Corporation

NSL Reference Manual

Chapter 11
11. Action description of memory

Declaration method of the memory is explained in Chapter 4 . Action description of the

memory is explained in this chapter .

Transfer of ":=" is used when data is written into the memory, and the transfer of "=" is used

just like the register when reading from the memory . With this, it writes in synchronization

with the clock, and reads out asynchronously .

As an example, it shows a 256 by 4 bit memory that is possible to read/write .

Description example 43. Description example of memory

declare	mem_test	{

	 input	in_data[4]	;

	 input	in_addr[8]	;

	 output	out_data[4]	;

	 func_in	write()	;

	 func_in	read()	;

}

module	mem_test	{

	 mem	memory[256][4]	=	{	4'b1010,	4'b0101,	4'b0000,	4'b1100};

	 func	write	memory[in_addr]	:=	in_data	;	 	 //	Write	memory

	 func	read		out_data	=	memory[in_addr]	;	 	 //	Read	memory

}

When "memory" is described, please check the part where the number of the addresses is

presented .

Since the number of addresses is specified by the integral value not the bit width, it is di-

rectly linked to the number of the addresses .

75Overtone Corporation

NSL Reference Manual

Chapter 12
12. Structure

The declaration method of structure was explained in Chapter 4 . In this chapter, it explains

about the instance declaration of structure, and the description method about structure

member in an action description .

After declaring a structure outside a module, an instance declaration of the structure is ex-

ecuted in the module .

Type of the signal is defined at the instance declaration. The types it can specify are reg or

wire . When declaring with reg, initial value also can be given .

Structure name reg Instance name =< Initial value>

Structure name wire Instance name

It is possible to have an instance have multiplicity just like declaration of a submodule by

specifying a number to the instance name with [] at the time of declaration .

For example, when

someting reg anything[5];

was described, 5 instances from anything[0] to anything[4] are created .

Setup of an initial value of instance with multiplicity is described as follows .

someting reg anything[5] = {0,2,4};

In this case, although the multiplicity is 5, since the initial values are no more than 3, 0 en-

ters the remaining 2 of (anything [3], anything [4]).

76 Overtone Corporation

NSL Reference Manual
It is possible to refer and transfer to instance and each member .

To transfer to instance and member is described as follows:

Instance name := Source (In case of instance being reg)

Instance name = Source (In case of instance being wire)

Instance name. member := Source (In case of instance being reg.)

Instance name. member = Source (In case of instance being wire)

To refer to instance and member, it describes as follows:

Destination := Instance name (In case of destination being reg)

Destination = Instance name (In case of destination being wire)

Destination := Instance name. member (In case of destination be-

ing reg)

Destination = Instance name. member (In case of destination being

wire)

A description example of structure is shown in Description example 44 .

Description example 44. Description example of structure

struct	strtest	{

	 test1[3];

	 test2[4];

	 test3;

};

declare	st{

}

module	st{

	 reg	r1[8],r2[3];

	 strtest	wire	mmw	;

	 strtest	reg	mmr	;

	 r2	:=	mmw.test1;

	 3b'100	is	transferred	to	mmr	:=	8'h93;	

	 	 //	mmr.test1,	4b'1001	is	done	to	mmr.test2,	and1b'1	is	done	to	mmr.

test3.	

	 mmw.test2	=	0xa;

	 r1	:=	mmw;

}

77Overtone Corporation

NSL Reference Manual

Chapter 13
13. Interface

Usually in NSL processing system, the clock signal and the reset signal used in a sequence

circuit are concealed on language, and a clock input terminal and a reset input terminal are

automatically produced at the time of producing a lower language .

Therefore, usually, NSL module becomes a circuit of single-phase clock . However, it can

avoid producing the clock input terminal and the reset input terminal automatically by at-

taching an interface modification to a declare syntax. So, it can satisfactorily describe even

the circuit which needs to use a reset clock signal explicitly when using a multi-phase clock,

etc .

Note: Regardless of the existence of interface modification, when a sequence circuit was

described in a module, the reset signal of the producing circuit is automatically synthesized

as the name called p_reset, and the reset signal is done as the name called m_clock . (The

signal name can be changed as an option at the time of synthesizing.)

The description method of interface is as follows .

// input/output structure element

// internal structure element

// portion of action description

interface syntax is explained in Description example 45 .

78 Overtone Corporation

NSL Reference Manual
Description example 45. Description example of interface

declare	if_test_adder4	interface	{	//	external	module

	 input	m_clock	;	//	Clock	input

	 input	p_reset	;	//	Reset	input

	 input	add_a[4]	;	//	Add	value	A

	 input	add_b[4]	;	//	Add	value	B

	 output	result_q[4]	;	//	Result	value	Q

}

module	if_test_adder4	{

	 reg	r1[4]	=	0	;

}

r1	:=	add_a	+	add_b	;

	 result_q	=	r1	;

}

declare	if_test	{	//	Declaration	of	main	module

	 input	sysclk	;	//	Clock	input

	 input	sysrst	;	//	Reset	input

	 input	add_a[4]	;	//	Add	value	A

	 input	add_b[4]	;	//	Add	value	B

	 output	result_q[4]	;	//	Result	value	Q

}

module	if_test	{	//	Definition	of	main	module

if_test_adder4	adder4	;

{

//	********	Input	signals	********

adder4.m_clock	=	sysclk	;	

	 //	sysclk	is	connected	to	the	external	module	of	m_clock	terminal.

	 		 sysclk	is	connected	to	the	external	module	of	m_clock	terminal.

adder4.p_reset	=	sysrst	;	

	 //sysrst	is	connected	to	the	external	module	of	p_reset		

adder4.add_a	=	add_a	;	

	 //	add_a	is	connected	to	the	external	module	of	add_a

adder4.add_b	=	add_b	;	

	 //	add_b	is	connected	to	the	external	module	of	add_b

	 //	********	Output	signals	********

result_q	=	adder4.result_q	;	

	 //	result_q	terminal	is	connected	to	the	external	module	of	result_q	

terminal.

}

Description example 45 is an example of using interface .

In the example, if_test is the top module, and if_test_adder4 is the submodule . Since inter-

79Overtone Corporation

NSL Reference Manual
face modification is attached to if_test_adder4, it does not automatically produce the reset

signal “p_reset” of if_test_addr4, and the clock signal “m_clock” . Therefore, for if_test_ad-

der4, p_reset and m_clock are declared in the declaration of data input terminal .

With this interface, it could clearly specify the reset signal and the clock signal of if_test_

adder4 as a direct signal name in the module . In addition, it is possible to directly con-

trol the submodule if_test_addr4 by directly passing the rest, and the clock signal called

sysclk,sysrst from the top module .

80 Overtone Corporation

NSL Reference Manual

Appendix
Appendix 1. Synthesis directive

”include” directive
In NSL, an external source file can be taken by using "include" directive just like C lan-

guage .

Description method of “include” directive is as follows .

#include	"File_path_name"

With this "include” directive, it becomes easy to control NSL file in terms of module.

A description example of "include" is shown as follows .

Description example O-1. Description example of "include”

When	you	put	the	file	"Sub_test.nsl"	on	the	same	directory	(folder)	as	the	

inc_test	module.	

#include	"sub_test.nsl"

//↓When	compiling,	"Sub_test.nsl"	is	developed	with	here.	

declare	inc_test	{

	 //	Describe	I/O	structure	element

}

module	inc_test	{

	 //	Describe	internal	structure	element

	 //	Describe	actions

}

”define” “undef” directive
The "define” directive is prepared to give the parameter when a module described in NSL is

called as a lower module . (The parameter syntax is used when a parameter is given to the

module described in Verilog HDL/VHDL/SystemC.)

The "define” directive is a directive that substitutes the character string and the expression

with another character string, etc . as well as C language .

For example, it becomes possible to replace "0'b0" with "ZERO" . However, NSL reserved

word cannot be replaced with .

The description method is as follows .

#define	Identifier_string	Replaced_expression

The character string distinguishes between capital letters and small letters .

The defined character string can be used in the source of NSL. To use the defined charac-

81Overtone Corporation

NSL Reference Manual
ter string in the identifier such as a module name, etc., the character string is enclosed in

%% .

Moreover, it is possible to describe so that a constant is added, and subtracted to the de-

fined character string with +/-.

In addition, the defined character string can be released by using “undef” directive. It is de-

scribed as follows .

#undef	Defined_string

A description example of "define" directive is shown as follows.

Description example O-2. Description example of "define”

#define	N	8	 	 	 	 	 	 //	N	is	defined	by	8

declare	test_%N%	{		 	 //	N	is	used	for	the	identifier.	

	 //	N	is	used	as	a	width	in	bits	of	the	data	input	terminal.

	 input	test_in[N];

	 //	N-1	is	used	as	a	width	in	bits	of	the	data	output	terminal.

	 output	test_out[N-1];

}

module	test_%N%	{	 	 	 //	N	is	used	for	the	identifier.	

	 //	From	N-2	to	0bit	of	the	data	input	terminal	is	transferred

	 //	to	the	data	output	data	terminal.

	 test_out	=	test_in[N-2:0];

}

This NSL code is converted as follows .

declare	test_8	{		 	 	 	 	 //	N	is	replaced	for	8

	 input	test_in[8];	 	 	 	 //	N	is	replaced	for	8

	 output	test_out[7];		 	 	 //	N-1	is	replaced	for	7

}

module	test_8	{	 	 	 	 	 	 //	N	is	replaced	for	8

	 test_out	=	test_in[6:0];	 //	N-2	is	replaced	for	6

}

”ifdef” / “ifndef” / “else” / “endif” directive
In NSL, it can use the directive such as “ifdef” and “endif” the same as C language . The fol-

lowing directives are supported by the standard pre-processor of NSL .

ifdef

ifndef

82 Overtone Corporation

NSL Reference Manual
else

endif

The usage is as follows .

#ifdef	identifier

When the identifier name was defined, it is valid up to "else" or "endif" directive.

#ifndef	identifier

When the identifier name was not defined, it is valid up to "else" or "endif" directive.

#else

The condition of "ifdef/ifndef" directive was not established, it is valid up to "endif" directive .

#endif

The effective area of "ifdef/ifndef/else" directive is ended .

In addition, the pre-processor of C language also can be used .

An example of "ifdef/ifndef/else/endif" directive is shown in Description example O-3 .

Description example O-3. Description example of "ifdef/ifndef/else/endif”

#define	DEBUG	 	 	 //	identifier	DEBUG	is	defined

declare	test	{

	 input	a[8];

	 input	b[8];

	 #ifdef	DEBUG	 	 //	If	identifier	DEBUG	is	not	defined,	

	 	 output	d[8];	 //	This	line	is	compiled.	

	 #else

	 	 output	q[8];	 //	If	identifier	DEBUG	is	defined,	this	line	is	compiled.	

	 #endif

}

module	test	{

	 #ifndef	DEBUG		 //	If	identifier	DEBUG	is	not	defined,	

	 	 q	=	a	&	b;	 	 //	This	line	is	compiled.	

	 #else

	 	 d	=	a	&	b;	 	 //	If	identifier	DEBUG	is	defined,	this	line	is	compiled.	

	 #endif

}

83Overtone Corporation

NSL Reference Manual

Appendix 2. System task
NSL can use the Verilog-HDL/SystemC compatible system task only for the synthesis into

Verilog-HDL and SystemC .

The system task is a syntax to mainly assist debugging, and it is used for the simulation .

The following Table ? shows the system tasks that can be used by NSL .

In case of NSL, the underscore "_" is applied instead of "$" due to the synthesis .

Table O2-1. Corresponding table by language of system task
System task
command

Corresponding system
task of Verilog-HDL

Corresponding
function of SystemC

Meaning

_display $display printf() Message and value are indicated on
the command line .

_monitor $monitor printf() Message and value are indicated on
the command line only when value of
the specified signal changed.

_finish $finish sc_stop() End of simulation
_time $time sc _time_stamp() Variable to indicate a simulation time .
_readmemb $readmemb - Readout of memory file (in binary)
_readmemh $readmemh - Readout of memory file (in

hexadecimal)

The corresponding table by language of the system task supported by NSL is shown as

follows .

Table O2-2. Corresponding table by language of system task
System task command Verilog HDL SystemC VHDL
_display Yes Yes No
_monitor Yes Yes No
_finish Yes Yes No
_time Yes Yes No
_readmemb Yes No No
_readmemh Yes No No

Yes : Corresponding No : Not corresponding

Usage of the system task is the same as Verilog-HDL. The system task can be used just

like Verilog-HDL now by applying the underscore "_" instead of "$" .

In addition, since this syntax is provided for the simulation purpose, the system task part

is not reflected in the real circuit when a module that includes a system task was logically

synthesized .

84 Overtone Corporation

NSL Reference Manual
display and monitor
The notation system of "_display" is shown as follows .

_display("<Format_specifier_character_string>",	<Signal_name>,	<	

Signal_name>,	...)

"display" is a system task that outputs the value and the message of a specified signal to

the standard output .

It automatically outputs the value of the signal, and adds a linefeed when "display" is

executed in NSL syntax .

Moreover, the syntax of "_ monitor" is shown as follows .

_monitor("<Format_specifier_character_string>",	<Signal_name>,	<	

Signal_name>,	...)

The "_monitor" is a system task that outputs the value and the message of a specified

signal to the standard output .

The "_monitor" differs from "_display", and outputs the message only when the value of a

specified signal changed when it was executed in NSL syntax.

time
The "time" is a system variable that indicates the simulation time . It can be used only for the

argument of "display", "monitor", and "finish".

The format specifier of "display" and" monitor" is shown in the following Table O2-3, and

the description example that includes the system variable "time" is shown in Description

example O2-1 .

Table O2-3. Format specifier of system task
%b It outputs in binary number .
%o It outputs in octal number .
%d It outputs in decimal number .
%h It outputs in hexadecimal number .
%e It outputs a real number in exponent notation .
%f It outputs a real number in decimal number .
%c It outputs character .
%s It outputs character string .

The example that uses "display", "monitor", and "time" is shown below as a usage example

of the system task .

85Overtone Corporation

NSL Reference Manual
Description example O2-1. Example of system task of "display", "monitor", and

"time"

declare	test_task	{

	 input	a[4],	b[4]	;

	 output	f[4]	;

}

module	test_task	{

	 reg	trigger[4]	=	0	;

	 reg	r1[4]	=	0	;

	 proc_name	proc1,	proc2	;

	 trigger	:=	{	trigger[3:1],	0b1	}	;

	 if(trigger	==	0b0111)	proc1()	;

	 proc	proc1	{

	 	 r1	:=	r1	+	0x1;

	 	 if(r1	>	10)	proc2()	;

	 	 _display("a	=	%	d,	b	=	%	d",	a,	b)	;

	 	 _monitor("r1	=	%	d,	T	=	%	t",	r1,	_time)	;

	 }

	 proc	proc2	{

	 	 f	=	r1	;

	 	 finish()	;

	 }

}

finish
The system task "finish" is a command that ends a simulation.

The notation system of "finish" is as follows.

_finish("<Character_string>")

When "finish" is executed in NSL syntax, the character string is output to the standard

output, and the simulation ends .

A description example of the system task "finish" is presented as follows.

86 Overtone Corporation

NSL Reference Manual
Description example O2-2. Example of system task "finish"

declare	test_finish	{

	 func_in	exec_add	;

}

module	test_finish	{

	 reg	sum[8]	=	0	;

	 reg	cnt[4]	=	0	;

	 func	exec_add	seq	{

	 	 for(cnt:=0;	cnt<10;	cnt++)	{

	 	 	 sum	:=	sum	+	0x01	;

	 	 }

	 	 _finish()	;

	 }

}

readmemh, readmemb
"readmemb" and "readmemh" are the system task that loads an external file as the initial

value of the memory .

Representing a sequence in the external file, it can be used by relating the file to it with this

system task .

The external file writes in the sequence in ASCII file text.

It reads in with "readmemb" when the sequence is a binary number, and it reads in with

"readmemh" for a hexadecimal number .

The notation system of "readmemb" and "readmemh" is as follows .

readmemb("File_name",	memory_name)

readmemh("File_name",	memory_name)

The usage of "readmemb" in NSL syntax is the same as "readmemh" .

Next, a description example of the system task "readmemh" is presented .

87Overtone Corporation

NSL Reference Manual
Description example O2-3. Example of system task "readmemh"

declare	test_read	{

	 input	in_adr[8],	in_data[8]	;

	 output	outdata[8]	;

	 func_in	write(in_adr,	in_data)	;

	 func_in	read(in_adr)	;

}

module	test_read	{

	 mem	memory[256][8]	;

	 func	write	{	memory[in_adr]	:=	in_data	;	}

	 func	read	{	outdata	=	memory[in_adr]	;	}

	 _readmemh("neko.txt",	memory);

}

88 Overtone Corporation

NSL Reference Manual

Appendix 3. Reserved keyword
A:

alt

any

B:

C:

D:

declare

E:

F:

finish

for

func_in

func_out

func_self

func

G:

generate

goto

H:

I:

inout

input

integer

interface

J:

K:

L:

label

label_name

M:

m_clock

mem

module

N:

O:

output

P:

p_reset

proc_name

proc

Q:

R:

reg

S:

seq

state

state_name

T:

U:

V:

variable

W:

while

wire

X:

Y:

Z:

